INSTALLATION INSTRUCTIONS

WALL MOUNT
ENERGY RECOVERY VENTILATOR
WITH EXHAUST

Models:
ERVF-A5
ERVF-C5

For Use With Bard
3-1/2 through 5 Ton
Wall Mount™ Air Conditioners
and Heat Pumps
CONTENTS

Model Nomenclature Legend ..3
Electrical Specifications ..3
General Description ...3
General Information ...3
Unpacking ..3
Performance and Application Data4
Basic Installation (Field Installation)5 & 6
Basic Installation (Factory Installed Versions)14
Control Wiring ..14
Ventilation Airflow ..14
Energy Recovery Ventilator Maintenance15
Maintenance Procedures15 & 16
Annual Maintenance16

Figures
Figure 1 Remove Blower Assembly6
Figure 2 Remove Access Panels7
Figure 3 Remove Air Filter & Exhaust Cover8
Figure 4 Install Exhaust Blower Assembly9
Figure 5 Plug Blower in Control Panel10
Figure 6 Connect Leads to Terminals11
Figure 7 Attach Hood & Replace Access Panel ..12
Figure 8 Airflow Diagram13
Figure 8A Speed Tap Label13
Figure 9 Belt Replacement Instructions16
Figure 10 Hub Assembly with Ball Bearing17

Tables
Table 1 Ventilation Air (CFM)14
MODEL NOMENCLATURE LEGEND

<table>
<thead>
<tr>
<th>ERV</th>
<th>F</th>
<th>A</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Recovery Ventilator</td>
<td>2-Piece Front Door</td>
<td>Electrical</td>
<td>Wall Mount™ – Cabinet Size</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A = 230/208 volt</td>
<td>2 = W18-24A, L and H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C = 460 volt</td>
<td>3 = W30-36A, L and H</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 = W42-60A, L and H</td>
</tr>
</tbody>
</table>

ELECTRICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Model</th>
<th>Voltage</th>
<th>Amps</th>
<th>Control Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERVF-AF</td>
<td>230/208</td>
<td>2.2</td>
<td>24V</td>
</tr>
<tr>
<td>ERVF-C5</td>
<td>460</td>
<td>1.2</td>
<td>24V</td>
</tr>
</tbody>
</table>

GENERAL DESCRIPTION

The Wall Mount Energy Recovery Ventilator was designed to provide energy efficient, cost effective ventilation to meet I.A.Q. (Indoor Air Quality) requirements while still maintaining good indoor comfort and humidity control for a variety of applications such as schools, classrooms, lounges, conference rooms, beauty salons and others. It provides a constant supply of fresh air for control of airborne pollutants including CO$_2$, smoke, radon, formaldehyde, excess moisture, virus and bacteria.

The ventilator incorporates patented rotary heat exchanger technology to remove both heat and moisture.

It is designed as a single package which can be easily factory or field installed for new installations or retrofit to the new Bard W**A and W**H Series wall mounted units. The package consists of a unique rotary Energy Recovery Cassette that can be easily removed for cleaning or maintenance. The ERVF-*5 has two 15-inch diameter heat transfer wheels for efficient heat transfer. The heat transfer wheels use a permanently bonded dry desiccant coating for total heat recovery.

Ventilation is accomplished with (2) blower/motor assemblies each consisting of a drive motor and dual blowers for maximum ventilation at low sound levels. The intake and exhaust blowers can be operated at the same speed (airflow rate) or different speeds to allow flexibility in maintaining desired building pressurization conditions. Factory shipped on medium intake and low exhaust. See Figure 8A to change speeds. The rotating energy wheels provide the heat transfer effectively during both summer and winter conditions. Provides required ventilation to meet the requirements of ASHRAE 62.1 standard.

NOTE: During operation below 5 degrees F outdoor temperature, freezing of moisture in the heat transfer wheel can occur. Consult the factory if this possibility exists.

GENERAL INFORMATION

NOTE: This manual covers both factory and field installed ERVF assemblies. For factory installed ERVF, skip information pertaining to installation of the ERVF system.

The ventilator should only be installed by a trained heating and air conditioning technician. These instructions serve as a guide to the technician installing the ventilator package. They are not intended as a step-by-step procedure, with which the mechanically-inclined owner can install the package. The ventilator housing is shipped in one carton which contains the following:

1. Energy Recovery Ventilator
2. Service Door
3. Rain Hood and Mist Eliminator
4. Installation Instructions

UNPACKING

Upon receipt of the equipment, be sure to compare the model number found on the shipping label with the accessory identification information on the ordering and shipping document to verify that the correct accessory has been shipped.

Inspect the carton housing of each ventilator as it is received, and before signing the freight bill, verify that all items have been received and that there is no visible damage. Note any shortages or damage on all copies of the freight bill. The receiving party must contact the last carrier immediately, preferably in writing, requesting inspection by the carrier’s agent. Concealed damage not discovered until after loading must be reported to the carrier within 15 days of its receipt.
PERFORMANCE AND APPLICATION DATA – ERVF-*5

SUMMER COOLING PERFORMANCE

<table>
<thead>
<tr>
<th>Ambient O.D.</th>
<th>VENTILATION RATE 450 CFM 50% EFFICIENCY</th>
<th>VENTILATION RATE 375 CFM 50% EFFICIENCY</th>
<th>VENTILATION RATE 300 CFM 50% EFFICIENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB/WB F VLT VLS VLL HRT HRS HRL VLT VLS VLL HRT HRS HRL VLT VLS VLL HRT HRS HRL</td>
<td>DB/WB F VLT VLS VLL HRT HRS HRL VLT VLS VLL HRT HRS HRL VLT VLS VLL HRT HRS HRL</td>
<td>DB/WB F VLT VLS VLL HRT HRS HRL VLT VLS VLL HRT HRS HRL VLT VLS VLL HRT HRS HRL</td>
<td></td>
</tr>
<tr>
<td>80 35190 9720 21670 20533 6318 14215 26325 6075 20250 17374 4009 0 13365</td>
<td>75 21465 9720 17144 13952 6318 7634 17887 8100 9787 11805 5345 6499 14310</td>
<td>65 9720 0 6318 3159 0 8100 5345 0 6480 0 4341</td>
<td></td>
</tr>
<tr>
<td>75 21465 9720 17144 13952 6318 7634 17887 8100 9787 11805 5345 6499 14310</td>
<td>70 12352 9720 2632 6318 1711 10293 8100 2193 6793 0 12150</td>
<td>60 9720 0 6318 3159 0 8100 5345 0 6480 0 4341</td>
<td></td>
</tr>
<tr>
<td>65 9720 0 6318 3159 0 8100 5345 0 6480 0 4341</td>
<td>60 9720 0 6318 3159 0 8100 5345 0 6480 0 4341</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INDOOR DESIGN CONDITIONS 70°F DB

<table>
<thead>
<tr>
<th>Ambient O.D.</th>
<th>VENTILATION RATE 450 CFM 50% EFFICIENCY</th>
<th>VENTILATION RATE 375 CFM 50% EFFICIENCY</th>
<th>VENTILATION RATE 300 CFM 50% EFFICIENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB/WB F VLT VLS VLL HRT HRS HRL VLT VLS VLL HRT HRS HRL VLT VLS VLL HRT HRS HRL</td>
<td>DB/WB F VLT VLS VLL HRT HRS HRL VLT VLS VLL HRT HRS HRL VLT VLS VLL HRT HRS HRL</td>
<td>DB/WB F VLT VLS VLL HRT HRS HRL VLT VLS VLL HRT HRS HRL VLT VLS VLL HRT HRS HRL</td>
<td></td>
</tr>
<tr>
<td>80 35190 4860 26730 20533 4378 15704 26325 6075 20250 17374 4009 0 13365</td>
<td>75 21465 4860 16605 13952 3159 10793 17887 4050 22275 17374 2672 14701 26320 3240 17820 14110</td>
<td>65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>75 21465 4860 16605 13952 3159 10793 17887 4050 22275 17374 2672 14701 26320 3240 17820 14110</td>
<td>70 12352 4860 7492 8029 3159 4870 10293 4050 6243 6793 0 12150</td>
<td>60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>65 4860 4860 0 3159 3159 0 4050 4050 0 2672 2672 0 3240 3240 0 2170</td>
<td>60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 4860 4860 0 3159 3159 0 4050 4050 0 2672 2672 0 3240 3240 0 2170</td>
<td>50 7290 2430 2430 0 3159 3159 0 4050 4050 0 2672 2672 0 3240 3240 0 2170</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70 12352 0 12352 8029 0 8029 10293 0 10293 6793 0 6793 8235 0 8235 0 5517</td>
<td>75 4252 0 4252 2764 0 2764 3543 0 3543 2338 0 2338 2835 0 2835 0 1899</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WINTER HEATING PERFORMANCE

<table>
<thead>
<tr>
<th>Ambient O.D.</th>
<th>VENTILATION RATE 450 CFM 50% EFFICIENCY</th>
<th>VENTILATION RATE 375 CFM 50% EFFICIENCY</th>
<th>VENTILATION RATE 300 CFM 50% EFFICIENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB/F WVL WHL WRL WVL WHL WRL WVL WHL WRL WVL WHL WRL</td>
<td>DB/F WVL WHL WRL WVL WHL WRL WVL WHL WRL WVL WHL WRL</td>
<td>DB/F WVL WHL WRL WVL WHL WRL WVL WHL WRL</td>
<td></td>
</tr>
<tr>
<td>65 2430 1944 2025 1640 1620 1328</td>
<td>60 4860 3888 4050 3280 3240 2656</td>
<td>55 7290 5632 6075 4920 4860 3965</td>
<td></td>
</tr>
<tr>
<td>50 9720 7776 8100 6561 6480 5313</td>
<td>45 12150 9720 10125 8201 8100 6642</td>
<td>40 14580 11664 12150 9841 9720 7970</td>
<td></td>
</tr>
<tr>
<td>35 17010 13608 14175 11481 11340 9298</td>
<td>30 19440 15552 16200 13122 12960 10627</td>
<td>25 21870 17496 18225 14762 14580 11955</td>
<td></td>
</tr>
<tr>
<td>20 24300 19440 20250 16402 16200 13284</td>
<td>15 26730 21384 22275 18042 17820 14612</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LEGEND:

- VLT = Ventilation Load - Total
- VLS = Ventilation Load - Sensible
- VLL = Ventilation Load - Latent
- HRT = Heat Recovery - Total
- HRS = Heat Recovery - Sensible
- HRL = Heat Recovery - Latent
- WVL = Winter Ventilation Load
- WHR = Winter Heat Recovery

Note: All performance data is based on operating intake and exhaust blower on the same speed.

Note: Sensible performance only is shown for winter application.
BASIC INSTALLATION (FIELD INSTALLATION)

1. Unpack the ventilator assembly which includes the integral ventilator with attached electrical harness and miscellaneous hardware.

WARNING
Open and lock unit disconnect switch before installing this accessory to prevent injury or death due to electrical shock or contact with moving parts. Turn thermostat to OFF.

CAUTION
Be sure the correct model and voltage Energy Recovery Ventilator is used with the correct air conditioner or heat pump to ensure correct voltage compatibility.

2. Remove exhaust blower assembly from back of ventilator and discard shipping plate. (See Figure 1.)

3. Remove the existing exterior blower access, filter access and vent access panels on the Bard Wall Mount unit. Save the blower access panel and filter access panels and discard vent option access panel. (See Figure 2.)

4. Remove and save existing unit air filter. Remove and discard the exhaust cover plate and remove center screw from condenser grille. (See Figure 3.)

5. Install exhaust blower assembly in exhaust opening and secure with four (4) screws. Position 4 pin connector so it is accessible. (See Figure 4.)

6. Install ventilator into the unit to the left side. Once the ventilator is fully inserted, slide the ventilator to the right until it is tight against the back of the control panel. (See Figure 5.)

IMPORTANT NOTE: Position front lip of ventilator over front grille and on top of condenser partition. (See Figure 5 inset.) This is important to ensure proper drainage of any water entering damper assembly.

7. Remove access panel and plug in exhaust blower. (See Figure 5.) Replace access panel.

8. Open control panel to gain access to unit low voltage terminal block. (Ensure all power is OFF prior to opening the control panel.)

9. Route electrical harness leads through the 7/8" bushing in control panel (Figure 5) into low voltage box.

10. Connect black lead with fork terminal to terminal strip terminal C, orange lead to terminal G and brown/white lead to F or O1 depending if heat pump or air conditioner. (See Figure 6 and wiring diagram.)

NOTE: These 24 volt control wires control the starting and stopping of the Energy Recovery Ventilator and can be independently controlled by an energy management control or timer. See separate section on Control Wiring for suggested control schemes.

11. Remove female plug of high voltage wiring harness from the heat recover assembly and snap into unit control panel. Wire to terminal block. (See Figure 6 and wiring diagram.)

12. Plug male plug from female at side of control panel. (See Figures 5.)

13. Close control panel cover.

14. Replace filter and one (1) screw in condenser grille. (See Figure 3)

15. Ventilator checkout
 A. Resupply power to unit.
 B. Energize the evaporator blower by switching thermostat to the manual fan position with Heat/Cool in OFF position.
 C. Ventilator heat transfer wheels should rotate slowly (49 RPM). Intake and exhaust blowers should run. (See Figure 8.)
 D. De-energize the evaporator blower. Energy Recovery wheels, and fresh air and exhaust air blowers should stop.
 E. This completes ventilator checkout.

16. See section on Recommended Control Sequences for permanent connection of the orange control wire that was connected to G for checkout.

17. Reinstall the blower access and filter access panels at top of unit and secure with sheet metal screws. (See Figure 2.)
18. Replace the lower service access panel with the new panel provided. Attach air intake hood with screws provided. (See Figure 7.) Be sure to insert the top flange of the air intake hood into and through the slot in the service door and between the door and insulation to prevent bowing of the door.

19. Apply Certification label, included with Installation Instructions, next to unit Serial Plate.

20. Ventilator is now ready for operation.
FIGURE 3
REMOVE AIR FILTER AND EXHAUST COVER PLATE

- Remove and discard exhaust cover plate
- Filter
- Screen
FIGURE 4
INSTALL EXHAUST BLOWER ASSEMBLY

- Fasten lower blower assy. to (4) hole. Partition with (4) screws.

- Condenser partition cut away so to show erly lower blower assy. relationship to unit.

 (IMPORTANT) Mitred edge towards cond. coil.
FIGURE 5
PLUG EXHAUST BLOWER INTO CONTROL PANEL

- Remove access panel and plug in exhaust blower. Replace access panel.
- When installing, Ery position so that hole in front lip is centered over hole in condenser grille to insert a self drilling screw.
- Route the Ery wires through hole and into control panel.
- High voltage wires to plug in side of control panel.

Caution: Hole in Ery must be used to insure clearance from condenser coil tubing.

FIGURE 5 (INSET)
- Service door
- LIP of Ery is to be between the condenser grille and service door
- Front grill
- Condenser partition
- Heat recovery ventilator

MIS-527
FIGURE 6
CONNECT LEADS TO TERMINALS

INSTALL 1-480701-0 CAP AS SHOWN AND WIRE PER WIRING DIAGRAM

TEMPORARY CONNECTION FOR TESTING. SEE RECOMMENDED CONTROL SEQUENCES

LOW VOLTAGE WIRES FROM HEAT RECOVERY ASSEMBLY.
FIGURE 7
ATTACH HOOD AND REPLACE ACCESS PANEL
FIGURE 8
AIRFLOW DIAGRAM

FIGURE 8A

TO ADJUST INTAKE AND EXHAUST BLOWER SPEEDS
1. DISCONNECT POWER TO UNIT
2. REMOVE EQX CONTROL PANEL COVER
3. MOVE BLACK INCLUDATOR TO DESIRED SPEED ON TERMINAL CONNECTOR
BASIC INSTALLATION
(FACTORY INSTALLED VERSIONS)
1. Remove blower access door and service door. Room filter located above air circulation blower. Install filter.
2. Remove and install air intake hood. Refer to Item 16 of Basic Installation (Field Installation).
3. Refer to Control Wiring section for suggested control schemes for the ERVF.
4. After wiring, replace all panels.

CONTROL WIRING
The ERVF comes from the factory with the low voltage control wires not wired into the wall mount low voltage terminal strip. Care must be taken when deciding how to control the operation of the ventilator. When designing the control circuit for the ventilator, the following requirements must be met.

CONTROL REQUIREMENTS
1. Indoor blower motor must be run whenever the ERVF is run.
2. Select the correct motor speed tap in the ERVF. Using Table 1 of the ERVF Installation Instructions determine the motor speed needed to get the desired amount of ventilation air needed. For instance, do not use the high speed tap on a ERVF-A5 if only 300 CFM of ventilation air is needed. Use the low speed tap. Using the high speed tap would serve no useful purpose and significantly affect the overall efficiency of the air conditioning system. System operating cost would also increase.
3. Run the ERVF only during periods when the conditioned space is occupied. Running the ERVF during unoccupied periods wastes energy, decreases the expected life of the ERVF, and can result in a large moisture buildup in the structure. The ERVF removes 60 to 70% of the moisture in the incoming air, not 100% of it. Running the ERVF when the structure is unoccupied allows moisture to build up in the structure because there is little or no cooling load. Thus, the air conditioner is not running enough to remove the excess moisture being brought in. Use a control system that in some way can control the system based on occupancy.

RECOMMENDED CONTROL SEQUENCES
Several possible control scenarios are listed below:
1. Use a programmable electronic thermostat with auxiliary terminal to control the ERVF based on daily programmed occupancy periods. Bard markets and recommends the Bard Part No. 8403-060 programmable electronic thermostat for air conditioner and heat pump applications.
2. Use a motion sensor in conjunction with a mechanical thermostat to determine occupancy in the structure. Bard markets the CS2000A for this use.
3. Use a DDC control system to control the ERVF based on a room occupancy schedule to control the ERVF.
4. Tie the operation of the ERVF into the light switch. The lights in a room are usually on only when occupied.
5. Use a manual timer that the occupants turn to energize the ERVF for a specific number of hours.
6. Use a programmable mechanical timer to energize the ERVF and indoor blower during occupied periods of the day.

VENTILATION AIRFLOW
The ERVF-A5 and ERVF-C5 are equipped with a 3-speed motor to provide the capability of adjusting the ventilation rates to the requirements of the specific application by simply changing motor speeds.

<table>
<thead>
<tr>
<th>Model</th>
<th>High Speed (Black)</th>
<th>Medium Speed (Blue)</th>
<th>Low Speed (Red)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERVF-A5</td>
<td>450</td>
<td>375</td>
<td>300</td>
</tr>
<tr>
<td>ERVF-C5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The units are set from the factory with the exhaust blower on the low speed and the intake blower on medium speed. Moving the speed taps located in the control panel can change the blower speed of the intake and exhaust. See Figure 8A.

* * * IMPORTANT * **
Operating the ERVF during unoccupied periods can result in a build up of moisture in the structure.

WARNING
Open disconnect to shut all power OFF before doing this. Failure to do so could result in injury or death due to electrical shock.
ENERGY RECOVERY VENTILATOR MAINTENANCE

GENERAL INFORMATION

The ability to clean exposed surfaces within air moving systems is an important design consideration for the maintenance of system performance and air quality. The need for periodic cleaning will be a function of operating schedule, climate, and contaminants in the indoor air being exhausted and in the outdoor air being supplied to the building. All components exposed to the airstream, including energy recovery wheels, may require cleaning in most applications.

Rotary counterflow heat exchanges (heat wheels) with laminar airflow are “self-cleaning” with respect to dry particles. Smaller particles pass through; larger particles land on the surface and are blown clear as the flow direction is reversed. For this reason, the primary need for cleaning is to remove films of oil-based aerosols that have condensed on energy transfer surfaces. Buildup of material over time may eventually reduce airflow. Most importantly, in the case of desiccant coated (enthalpy) wheels, such films can close off micron sized pores at the surface of the desiccant material, reducing the efficiency with which the desiccant can absorb and desorb moisture.

FREQUENCY

In a reasonably clean indoor environment such as a school, office building, or home, experience shows that reductions of airflow or loss of sensible (temperature) effectiveness may not occur for ten or more years. However, experience also shows that measurable changes in latent energy (water vapor) transfer can occur in shorter periods of time in commercial, institutional and residential applications experiencing moderate occupant smoking or with cooking facilities. In applications experiencing unusually high levels of occupant smoking, such as smoking lounges, nightclubs, bars and restaurants, washing of energy transfer surfaces, as frequently as every six months, may be necessary to maintain latent transfer efficiency. Similar washing cycles may also be appropriate for industrial applications involving the ventilation of high levels of smoke or oil-based aerosols such as those found in welding or machining operations, for example. In these applications, latent efficiency losses of as much as 40% or more may develop over a period of one to three years.

CLEANABILITY AND PERFORMANCE

In order to maintain energy recovery ventilation systems, energy transfer surfaces must be accessible for washing to remove oils, grease, tars and dirt that can impede performance or generate odors. Washing of the desiccant surfaces is required to remove contaminate buildups that can reduce adsorption of water molecules. The continued ability of an enthalpy wheel to transfer latent energy depends upon the permanence of the bond between the desiccant and the energy transfer surfaces.

Bard wheels feature silica gel desiccant permanently bonded to the heat exchange surface without adhesives; the desiccant will not be lost in the washing process. Proper cleaning of the Bard energy recovery wheel will restore latent effectiveness to near original performance.

MAINTENANCE PROCEDURES

NOTE: Local conditions can vary and affect the required time between routine maintenance procedures, therefore all sites (or specific units at a site) may not have the same schedule to maintain acceptable performance. The following timetables are recommended and can be altered based on local experience.

QUARTERLY MAINTENANCE

1. Inspect mist eliminator/prefilter and clean if necessary. This filter is located in the fresh air intake hood on the front of the unit. This is an aluminum mesh filter and can be cleaned with water and any detergent not harmful to aluminum.

2. Inspect wall mount unit filter and clean or replace as necessary. This filter is located either in the unit, in a return air filter grille assembly, or both. If in the unit it can be accessed by removing the lower service door on the front of the unit. If in a return air filter grille, by hinging the grille open to gain access.

3. Inspect energy recovery ventilator for proper wheel rotation and dirt buildup. This can be done in conjunction with Item 2 above. Energize the energy recovery ventilator after inspecting the filter and observe for proper rotation and/or dirt buildup.

4. Recommended energy recovery wheel cleaning procedures follow Steps 5 through 8.

5. Disconnect all power to unit. Remove the lower service door of the wall mount unit to gain access to the energy recovery ventilator.
6. Remove the front access panel on the ventilator. Unplug amp connectors to cassette motors. Slide energy recovery cassette out of ventilator.

7. Use a shop vacuum with brush attachment to clean both sides of the energy recovery wheels.

8. Reverse shop vacuum to use as a blower and blow out any residual dry debris from the wheel.

NOTE: Discoloration and staining of the wheel does not affect its performance. Only excessive buildup of foreign material needs to be removed.

9. If any belt chirping or squealing noise is present, apply a small amount of LPS-1 or equivalent dry film lubricant to the belt.

ANNUAL MAINTENANCE

1. Inspect and conduct the same procedures as outlined under Quarterly Maintenance.

2. To maintain peak latent (moisture) removal capacity, it is recommended that the energy recovery wheels be sprayed with a diluted nonacid based evaporator coil cleaner or alkaline detergent solution such as 409.

NOTE: Do not use acid based cleaners, aromatic solvents, temperatures in excess of 170° F or steam. Damage to the wheel may result.

3. Rinse wheel thoroughly after application of the cleaning solution, and allow to drain before reinstalling.

4. No re-lubrication is required to heat wheel bearings of the drive motor, or to the intake and exhaust blower motors.

5. If any belt chirping or squealing noise is present, apply a small amount of LPS-1 or equivalent dry film lubricant to the belt.

FIGURE 9
BELT REPLACEMENT INSTRUCTIONS