INSTALLATION INSTRUCTIONS

WALL MOUNT
ENERGY RECOVERY VENTILATOR
WITH EXHAUST
and
OUTDOOR AIR SHUT-OFF DAMPER

Models:
CHERV-A5
CHERV-C5

For Use With Bard
3 through 5 Ton
Wall Mount™ CH Heat Pumps
MODEL NOMENCLATURE LEGEND

CH = Wall Mount
Energy Recovery Ventilator

ERV = Energy Recovery Ventilator

A = 230/208 volt
C = 460 volt

5 = CH3S, 4S, 5S

Color
X = Beige
4 = Buckeye Gray

Wall Mount™ – Cabinet Size

GENERAL DESCRIPTION

The Wall Mount Energy Recovery Ventilator was designed to provide energy efficient, cost effective ventilation to meet I.A.Q. (Indoor Air Quality) requirements while still maintaining good indoor comfort and humidity control for a variety of applications such as schools, classrooms, lounges, conference rooms, beauty salons and others. It provides a constant supply of fresh air for control of airborne pollutants including CO₂, smoke, radon, formaldehyde, excess moisture, virus and bacteria.

The ventilator incorporates patented rotary heat exchanger technology to remove both heat and moisture. It is designed as a single package which can be easily factory or field installed for new installations or retrofit to the new Bard CH series wall mounted units. The package consists of a unique rotary Energy Recovery Cassette that can be easily removed for cleaning or maintenance. The CHERV-*5 has two 15-inch diameter heat transfer wheels for efficient heat transfer. The heat transfer wheels use a permanently bonded dry desiccant coating for total heat recovery. An outdoor air shutoff damper is an integral feature of the CHERV and prevents infiltration when the ERV is turned off.

Ventilation is accomplished with (2) blower/motor assemblies each consisting of a drive motor and dual blowers for maximum ventilation at low sound levels. The intake and exhaust blowers can be operated at the same speed (airflow rate) or different speeds to allow flexibility in maintaining desired building pressurization conditions. Factory shipped on medium intake and low exhaust. See Figure 8A to change speeds. The rotating energy wheels provide the heat transfer effectively during both summer and winter conditions. Provides required ventilation to meet the requirements of ASHRAE 62.1 standard.

ELECTRICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Model</th>
<th>Voltage</th>
<th>Amps</th>
<th>Control Voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHERV-A5</td>
<td>230/208</td>
<td>2.2</td>
<td>24V</td>
</tr>
<tr>
<td>CHERV-C5</td>
<td>460</td>
<td>1.2</td>
<td>24V</td>
</tr>
</tbody>
</table>

NOTE: During operation below 5 degrees F outdoor temperature, freezing of moisture in the heat transfer wheel can occur. Consult the factory if this possibility exists.

GENERAL INFORMATION

NOTE: This manual covers both factory and field installed CHERV assemblies. For factory installed CHERV, skip information pertaining to installation of the CHERV system.

The ventilator should only be installed by a trained heating and air conditioning technician. These instructions serve as a guide to the technician installing the ventilator package. They are not intended as a step-by-step procedure, with which the mechanically-inclined owner can install the package. The ventilator housing is shipped in one carton which contains the following:

1. Energy Recovery Ventilator
2. Service Door
3. Rain Hood and Mist Eliminator
4. Installation Instructions

UNPACKING

Upon receipt of the equipment, be sure to compare the model number found on the shipping label with the accessory identification information on the ordering and shipping document to verify that the correct accessory has been shipped.

Inspect the carton housing of each ventilator as it is received, and before signing the freight bill, verify that all items have been received and that there is no visible damage. Note any shortages or damage on all copies of the freight bill. The receiving party must contact the last carrier immediately, preferably in writing, requesting inspection by the carrier’s agent. Concealed damage not discovered until after loading must be reported to the carrier within 15 days of its receipt.
PERFORMANCE AND APPLICATION DATA – CHERV.*5

SUMMER COOLING PERFORMANCE

(INDOOR DESIGN CONDITIONS 75°DB/62°WB)

<table>
<thead>
<tr>
<th>Ambient O.D.</th>
<th>VENTILATION RATE 450 CFM</th>
<th>VENTILATION RATE 375 CFM</th>
<th>VENTILATION RATE 300 CFM</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB/ WB F</td>
<td>VLT</td>
<td>VLS</td>
<td>VLL</td>
</tr>
<tr>
<td>75 105 70</td>
<td>21465 14580 6884 13952 9477 4475</td>
<td>17887 12150 5737 11805 8018 3786</td>
<td>14310 9720 4590 9587 6512 3075</td>
</tr>
<tr>
<td>80 100 65</td>
<td>31590 12150 19440 20533 7897 12635</td>
<td>26325 10125 16200 17374 6882 10692</td>
<td>21060 8100 12960 14110 5427 8683</td>
</tr>
<tr>
<td>75 100 55</td>
<td>21465 12150 9314 13952 7897 6054</td>
<td>17887 10125 7762 11805 6882 5123</td>
<td>14310 8100 6210 9587 5427 4160</td>
</tr>
<tr>
<td>80 100 65</td>
<td>31590 12150 202 8029 7897 131</td>
<td>10293 10125 168 6793 6882 111</td>
<td>8235 8100 135 5517 5427 90</td>
</tr>
<tr>
<td>80 100 65</td>
<td>31590 9720 21870 20533 6318 14215</td>
<td>26325 8100 18225 17374 5345 12028</td>
<td>21060 6480 14580 14110 4341 9768</td>
</tr>
<tr>
<td>95 85 70</td>
<td>31590 12150 11744 13952 6318 7634</td>
<td>17887 8100 9787 11805 5345 6459</td>
<td>14310 6480 7830 9587 4341 5246</td>
</tr>
<tr>
<td>80 85 70</td>
<td>31590 9720 24300 20533 4738 15794</td>
<td>26325 6075 20250 17374 4009 13365</td>
<td>21060 4860 16200 14110 3256 10854</td>
</tr>
<tr>
<td>90 85 70</td>
<td>31590 2920 5062 8029 4738 3290</td>
<td>10293 6075 4218 6793 4009 2784</td>
<td>8235 4860 3375 5517 2261</td>
</tr>
<tr>
<td>80 85 65</td>
<td>31590 4860 26730 20533 3159 17374</td>
<td>26325 4050 22275 17374 2672 14701</td>
<td>21060 3240 17820 14110 2170 11939</td>
</tr>
<tr>
<td>90 85 65</td>
<td>31590 4860 16605 13952 3159 10793</td>
<td>17887 4050 13837 11805 2672 9132</td>
<td>14310 3240 11070 9587 2170 7416</td>
</tr>
<tr>
<td>80 90 65</td>
<td>31590 4860 7492 8029 3159 4870</td>
<td>10293 4050 6243 6793 2672 4120</td>
<td>8235 3240 4995 5517 2170 3346</td>
</tr>
<tr>
<td>80 90 65</td>
<td>4860 4860 0 3159 3159 0</td>
<td>4050 4050 0 2672 2672 0</td>
<td>3240 3240 0 2170 2170 0</td>
</tr>
<tr>
<td>80 90 65</td>
<td>4860 4860 0 3159 3159 0</td>
<td>4050 4050 0 2672 2672 0</td>
<td>3240 3240 0 2170 2170 0</td>
</tr>
<tr>
<td>75 80 65</td>
<td>31590 2430 19035 13952 1579 12372</td>
<td>17887 2025 15862 11805 1336 10469</td>
<td>14310 1620 12690 9587 1085 8502</td>
</tr>
<tr>
<td>80 80 65</td>
<td>31590 2430 9922 8029 1579 6449</td>
<td>10293 2025 8268 6793 1336 5457</td>
<td>8235 1620 6615 5517 1085 4432</td>
</tr>
<tr>
<td>80 80 65</td>
<td>4252 2430 1822 2764 1579 1184</td>
<td>3543 2025 1518 2338 1336 1002</td>
<td>2835 1620 1215 1899 1085 814</td>
</tr>
<tr>
<td>80 80 65</td>
<td>4340 2430 0 1579 1579 0</td>
<td>2025 2025 0 1336 1336 0</td>
<td>1620 1620 0 1085 1085 0</td>
</tr>
<tr>
<td>80 80 65</td>
<td>31352 0 12352 8029 0 8029</td>
<td>10293 0 10293 6793 0 6793</td>
<td>8235 0 8235 5517 0 5517</td>
</tr>
<tr>
<td>75 80 65</td>
<td>4252 0 4252 2764 0 2764</td>
<td>3543 0 3543 2338 0 2338</td>
<td>2835 0 2835 1899 0 1899</td>
</tr>
<tr>
<td>80 80 65</td>
<td>0 0 0 0 0 0</td>
<td>0 0 0 0 0 0</td>
<td>0 0 0 0 0 0</td>
</tr>
</tbody>
</table>

CHERV-A5 WINTER HEATING PERFORMANCE

(INDOOR DESIGN CONDITIONS 70°F DB)

<table>
<thead>
<tr>
<th>Ambient O.D.</th>
<th>VENTILATION RATE 450 CFM</th>
<th>VENTILATION RATE 375 CFM</th>
<th>VENTILATION RATE 300 CFM</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB/°F WVL WHR</td>
<td>WVL WHR</td>
<td>WVL WHR</td>
<td>WVL WHR</td>
</tr>
<tr>
<td>65 2430 1944 2025 1640 1620 1328</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 4860 3888 4050 3280 3240 2656</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55 7290 5832 6075 4920 4860 3985</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50 9720 7776 8100 6561 6480 5313</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45 12150 9720 10125 8201 8100 6642</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 14580 11664 12150 9841 9720 7970</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35 17010 13608 14175 11481 11340 9298</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 19440 15552 16200 13122 12960 10627</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 21870 17496 18225 14762 14580 11955</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 24300 19440 20250 16402 16200 13284</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 26730 21384 22275 18042 17820 14612</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LEGEND:

- VLT = Ventilation Load – Total
- VLS = Ventilation Load – Sensible
- VLL = Ventilation Load – Latent
- HRT = Heat Recovery – Total
- HRS = Heat Recovery – Sensible
- HRL = Heat Recovery – Latent
- WVL = Winter Ventilation Load
- WHR = Winter Heat Recovery

Note: All performance data is based on operating intake and exhaust blower on the same speed.

NOTE: Sensible performance only is shown for winter application.
BASIC INSTALLATION
(FIELD INSTALLATION)

1. Unpack the ventilator assembly which includes the integral ventilator with attached electrical harness and miscellaneous hardware.

WARNING
Open and lock unit disconnect switch before installing this accessory to prevent injury or death due to electrical shock or contact with moving parts. Turn thermostat to OFF.

![Table]

<table>
<thead>
<tr>
<th>Model</th>
<th>For Use With the Following Units</th>
<th>Electrical</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHERV-A5</td>
<td>CH3S1-A, B CH4S1-A, B CH5S1-A, B</td>
<td>230/208 - 1 or 3 phase</td>
</tr>
<tr>
<td>CHERV-C5</td>
<td>CH5S1-C CH4S1-C CH3S1-C</td>
<td>460 - 3 phase</td>
</tr>
</tbody>
</table>

CAUTION
Be sure the correct model and voltage Energy Recovery Ventilator is used with the correct air conditioner or heat pump to insure correct voltage compatibility.

2. Remove exhaust blower assembly from back of ventilator and discard shipping plate. (See Figure 1.)
3. Remove the existing exterior filter access and service access panels on the Bard Wall Mount unit. Save the filter access panel and discard service access panel. (See Figure 2.)
4. Remove and save existing unit air filter. Remove and discard the exhaust cover plate and remove center screw from condenser grille. (See Figure 3.)
5. Install exhaust blower assembly in exhaust opening and secure with four (4) screws. Position 4 pin connector so it is accessible. (See Figure 4.)
6. Install ventilator into the unit to the left side. Once the ventilator is fully inserted, slide the ventilator to the right until it is tight against the back of the control panel. (See Figure 5.)

IMPORTANT NOTE: Position front lip of ventilator over front grille and on top of condenser partition. (See Figure 5 inset.) This is important to insure proper drainage of any water entering damper assembly.

7. Remove access panel and plug in exhaust blower. (See Figure 5.) Replace access panel.
8. Open control panel to gain access to unit low voltage terminal block. (Insure all power is OFF prior to opening the control panel.)
9. Route electrical harness leads through the 7/8” bushing in control panel (Figure 5) into low voltage box.
10. Connect black lead with fork terminal to terminal strip terminal C, and orange lead to terminal G. Brown with white stripe to terminal “01”. Connect yellow jumper from “01” to G if the thermostat does not have an “A1” terminal or other terminal for occupied mode. (See Figure 6 and wiring diagram.)

NOTE: These 24 volt control wires control the starting and stopping of the Energy Recovery Ventilator and can be independently controlled by an energy management control or timer. See separate section on Control Wiring for suggested control schemes.

11. Remove female plug of high voltage wiring harness from the heat recover assembly and snap into unit control panel. Wire to terminal block. (See Figure 6 and wiring diagram.)
12. Plug male plug from female at side of control panel. (See Figures 5.)
13. Close control panel cover.
14. Replace filter and one (1) screw in condenser grille. (See Figure 3)
15. Ventilator checkout
 A. Resupply power to unit.
 B. Energize the evaporator blower by switching thermostat to the manual fan position with Heat/Cool in OFF position.
 C. Ventilator heat transfer wheels should rotate slowly (49 RPM). Intake and exhaust blowers should run. (See Figure 8.)
 D. De-energize the evaporator blower. Energy Recovery wheels, and fresh air and exhaust air blowers should stop.
 E. This completes ventilator checkout.
16. See section on Recommended Control Sequences for permanent connection of the orange control wire that was connected to G for checkout.
17. Reinstall the blower access panel at top of unit and secure with sheet metal screws. (See Figure 2.)
18. Replace the lower service access panel with the new panel provided. Attach air intake hood with screws provided. (See Figure 7.) Be sure to insert the top flange of the air intake hood into and through the slot in the service door and between the door and insulation to prevent bowing of the door.

19. Apply Certification label, included with Installation Instructions, next to unit Serial Plate.

20. Ventilator is now ready for operation.
FIGURE 2
REMOVE ACCESS PANELS

Remove and Save Filter Access Door

Remove and Discard Service Access Door

Circuit Breaker Door

Control Panel Door

MIS-2235
FIGURE 3
REMOVE AIR FILTER AND EXHAUST COVER PLATE

Remove and Discard Exhaust Cover Plate

Remove and Save Center Grille Screw

Remove and Save Unit Air Filter
Fasten box to partition using (4) screws

Insert lower blower box with 45° mitered corner facing condenser coil (front of unit)

Exhaust hoods face left side of unit

MIS-2236
FIGURE 5
PLUG EXHAUST BLOWER INTO CONTROL PANEL

REMOVE ACCESS PANEL AND PLUG IN EXHAUST BLOWER. REPLACE ACCESS PANEL.

CAUTION: HOLE IN WERV MUST BE USED TO INSURE CLEARANCE FROM CONDENSER COIL TUBING.

FIGURE 5 (INSET)

SERVICE DOOR

LIP OF WERV IS TO BE BETWEEN THE CONDENSER GRILLE AND SERVICE DOOR

FRONT GRILL

HEAT RECOVERY VENTILATOR

SIDE SECTION

CONDENSER PARTITION

HIGH VOLTAGE WIRES TO PLUG IN SIDE OF CONTROL PANEL.

ROUTE THE WERV WIRES THROUGH HOLE AND INTO CONTROL PANEL.

WHEN INSTALLING WERV POSITION SO THAT HOLE IN FRONT LIP IS CENTERED OVER HOLE IN CONDENSER GRILLE TO INSERT A SELF DRILLING SCREW.

MIS-527
FIGURE 6
CONNECT LEADS TO TERMINALS

INSTALL 1-480701-0 CAP AS SHOWN AND WIRE PER WIRING DIAGRAM

TEMPORARY CONNECTION FOR TESTING. SEE RECOMMENDED CONTROL SEQUENCES

LOW VOLTAGE WIRES FROM HEAT RECOVERY ASSEMBLY.
FIGURE 7
ATTACH HOOD AND REPLACE ACCESS PANEL

- Replace filter
- Install Energy Recovery
- Replace filter access door
- Attach fresh air intake hood to service door
- Align hole with top grille hole
- Attach service door to unit
- Remove access panel to plug in exhaust blower
FIGURE 8
AIRFLOW DIAGRAM

Evaporator coil

Conditioned air enters room (Supply Air)

Fresh air and room air enters evaporator section

Room air enters unit (Return Air)

Energy recovery wheel

Fresh outside air enters unit

Outside air enters condenser section

Condenser Coil

Condenser air and exhaust air leave side grille.

FIGURE 8A

to adjust intake and exhaust blower speeds
1. Disconnect power to unit
2. Remove ERV control panel cover
3. Move black insulator to desired speed on terminal connector

BLACK INSULATORS
BASIC INSTALLATION
(FACTORY INSTALLED VERSIONS)

1. Remove blower access door and service door. Room filter located above air circulation blower. Install filter.
2. Remove and install air intake hood. Refer to Item 16 of Basic Installation (Field Installation).
3. Refer to Control Wiring section for suggested control schemes for the CHERV.
4. After wiring, replace all panels.

CONTROL WIRING

The CHERV comes from the factory with the low voltage control wires wired into the wall mount low voltage terminal strip. Care must be taken when deciding how to control the operation of the ventilator. When designing the control circuit for the ventilator, the following requirements must be met.

CONTROL REQUIREMENTS

1. Indoor blower motor must be run whenever the CHERV is run.
2. Select the correct motor speed tap in the CHERV. Using Table 1 of the CHERV Installation Instructions determine the motor speed needed to get the desired amount of ventilation air needed. For instance, do not use the high speed tap on a CHERV-A5 if only 300 CFM of ventilation air is needed. Use the low speed tap. Using the high speed tap would serve no useful purpose and significantly affect the overall efficiency of the air conditioning system. System operating cost would also increase.
3. Run the CHERV only during periods when the conditioned space is occupied. Running the CHERV during unoccupied periods wastes energy, decreases the expected life of the CHERV, and can result in a large moisture buildup in the structure. The CHERV removes 60 to 70% of the moisture in the incoming air, not 100% of it. Running the CHERV when the structure is unoccupied allows moisture to build up in the structure because there is little or now cooling load. Thus, the air conditioner is not running enough to remove the excess moisture being brought in. Use a control system that in some way can control the system based on occupancy.

RECOMMENDED CONTROL SEQUENCES

Several possible control scenarios are listed below:

1. Use a programmable electronic thermostat with auxiliary terminal to control the CHERV based on daily programmed occupancy periods. Bard markets and recommends the Bard Part No. 8403-060 programmable electronic thermostat for air conditioner and heat pump applications. (See Figure 9.)
2. Use a CO2 sensor in conjunction with a mechanical thermostat to keep CO2 at required levels. We recommend using Bard CO2 controller 8403-056. (See Figure 10.)
3. Use a motion sensor in conjunction with a mechanical thermostat to determine occupancy in the structure. Bard markets the CS2000A1 for this use. (See Figure 11.)
4. Use a DDC control system to control the CHERV based on a room occupancy schedule to control the CHERV.
5. Tie the operation of the CHERV into the light switch. The lights in a room are usually on only when occupied.
6. Use a manual timer that the occupants turn to energize the CHERV for a specific number of hours.
7. Use a programmable mechanical timer to energize the CHERV and indoor blower during occupied periods of the day.

VENTILATION AIRFLOW

The CHERV-A5 and CHERV-C5 are equipped with a 3-speed motor to provide the capability of adjusting the ventilation rates to the requirements of the specific application by simply changing motor speeds.

** IMPORTANT **

Operating the CHERV during unoccupied periods can result in a build up of moisture in the structure.

WARNING

Open disconnect to shut all power OFF before doing this. Failure to do so could result in injury or death due to electrical shock.
FIGURE 9
HEAT PUMP WIRING

1. PROGRAM THERMOSTAT FOR CONTINUOUS BLOWER DURING OCCUPIED PERIODS

2. ONLY NEEDED IF DEHUMIDIFICATION IS USED

3. IF THERMOSTAT 8403-060 IS USED IN PROGRAMMABLE MODE, REMOVE THE ORANGE WIRE FROM TERMINAL "G" AND TAPE UP END. IF THE ORANGE WIRE IS NOT DISCONNECTED, THE ERV WILL KEEP RUNNING UNTIL THE CALL FOR BLOWER IS SATISFIED.

MIS-2792
FIGURE 10
HEAT PUMP WIRING WITH CO₂ CONTROLLER

Thermostat
Part #8403-052, 8403-053, 8403-055

Thermostat With Humidity
Part #8403-060

Optional CO₂ Controller
(C7232A1008) Bard part #8403-056
Not Used

Wall Mount Heat Pump

FACTORY INSTALLED JUMPER

ONLY NEEDED IF DEHUMIDIFICATION IS USED

MIS-2793
FIGURE 11

HEAT PUMP CONNECTION DIAGRAM

RECOMMENDED SWITCH SETTINGS SHOWN BELOW

<table>
<thead>
<tr>
<th>FUNCTION SWITCHES</th>
<th>TEMPERATURE SWITCHES</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEARN</td>
<td>90</td>
</tr>
<tr>
<td>PRE P</td>
<td>84</td>
</tr>
<tr>
<td>MODE</td>
<td>81</td>
</tr>
<tr>
<td>RATE</td>
<td>78</td>
</tr>
<tr>
<td>SEARCH-TIME</td>
<td>68</td>
</tr>
<tr>
<td>N/C</td>
<td>65</td>
</tr>
<tr>
<td>STAGE</td>
<td>62</td>
</tr>
<tr>
<td>AUX</td>
<td>58</td>
</tr>
<tr>
<td>DEMAND 2</td>
<td>54</td>
</tr>
<tr>
<td>DEMAND 1</td>
<td>48</td>
</tr>
</tbody>
</table>

JUMPER IS FACTORY INSTALLED.
LIGHTING CONTROL CIRCUIT IS OPTIONAL AND FIELD SUPPLIED. LIGHTING CONTROL RELAY REQUIRE NORMALLY CLOSED CONTACTS AND MUST BE SIZED ACCORDING TO CONTROLLED LOAD.
ENERGY RECOVERY VENTILATOR MAINTENANCE

GENERAL INFORMATION

The ability to clean exposed surfaces within air moving systems is an important design consideration for the maintenance of system performance and air quality. The need for periodic cleaning will be a function of operating schedule, climate, and contaminants in the indoor air being exhausted and in the outdoor air being supplied to the building. All components exposed to the airstream, including energy recovery wheels, may require cleaning in most applications.

Rotary counterflow heat exchanges (heat wheels) with laminar airflow are “self-cleaning” with respect to dry particles. Smaller particles pass through; larger particles land on the surface and are blown clear as the flow direction is reversed. For this reason, the primary need for cleaning is to remove films of oil-based aerosols that have condensed on energy transfer surfaces. Buildup of material over time may eventually reduce airflow. Most importantly, in the case of desiccant coated (enthalpy) wheels, such films can close off micron sized pores at the surface of the desiccant material, reducing the efficiency with which the desiccant can absorb and desorb moisture.

FREQUENCY

In a reasonably clean indoor environment such as a school, office building, or home, experience shows that reductions of airflow or loss of sensible (temperature) effectiveness may not occur for ten or more years. However, experience also shows that measurable changes in latent energy (water vapor) transfer can occur in shorter periods of time in commercial, institutional and residential applications experiencing moderate occupant smoking or with cooking facilities. In applications experiencing unusually high levels of occupant smoking, such as smoking lounges, nightclubs, bars and restaurants, washing of energy transfer surfaces, as frequently as every six months, may be necessary to maintain latent transfer efficiency. Similar washing cycles may also be appropriate for industrial applications involving the ventilation of high levels of smoke or oil-based aerosols such as those found in welding or machining operations, for example. In these applications, latent efficiency losses of as much as 40% or more may develop over a period of one to three years.

CLEANABILITY AND PERFORMANCE

In order to maintain energy recovery ventilation systems, energy transfer surfaces must be accessible for washing to remove oils, grease, tars and dirt that can impede performance or generate odors. Washing of the desiccant surfaces is required to remove contaminates buildups that can reduce adsorption of water molecules. The continued ability of an enthalpy wheel to transfer latent energy depends upon the permanence of the bond between the desiccant and the energy transfer surfaces.

Bard wheels feature silica gel desiccant permanently bonded to the heat exchange surface without adhesives; the desiccant will not be lost in the washing process. Proper cleaning of the Bard energy recovery wheel will restore latent effectiveness to near original performance.

MAINTENANCE PROCEDURES

NOTE: Local conditions can vary and affect the required time between routine maintenance procedures, therefore all sites (or specific units at a site) may not have the same schedule to maintain acceptable performance. The following timetables are recommended and can be altered based on local experience.

QUARTERLY MAINTENANCE

1. Inspect mist eliminator/prefilter and clean if necessary. This filter is located in the fresh air intake hood on the front of the unit. This is an aluminum mesh filter and can be cleaned with water and any detergent not harmful to aluminum.

2. Inspect wall mount unit filter and clean or replace as necessary. This filter is located either in the unit, in a return air filter grille assembly, or both. If in the unit it can be accessed by removing the lower service door on the front of the unit. If in a return air filter grille, by hinging the grille open to gain access.

3. Inspect energy recovery ventilator for proper wheel rotation and dirt buildup. This can be done in conjunction with Item 2 above. Energize the energy recovery ventilator after inspecting the filter and observe for proper rotation and/or dirt buildup.

4. Recommended energy recovery wheel cleaning procedures follow: Disconnect all power to unit. Remove the lower service door of the wall mount unit to gain access to the energy recovery ventilator.
5. Remove the front access panel on the ventilator. Unplug amp connectors to cassette motors. Slide energy recovery cassette out of ventilator.

6. Use a shop vacuum with brush attachment to clean both sides of the energy recovery wheels.

7. Reverse shop vacuum to use as a blower and blow out any residual dry debris from the wheel.

NOTE: Discoloration and staining of the wheel does not affect its performance. Only excessive buildup of foreign material needs to be removed.

8. If any belt chirping or squealing noise is present, apply a small amount of LPS-1 or equivalent dry film lubricant to the belt.

ANNUAL MAINTENANCE

1. Inspect and conduct the same procedures as outlined under Quarterly Maintenance.

2. To maintain peak latent (moisture) removal capacity, it is recommended that the energy recovery wheels be sprayed with a diluted nonacid based evaporator coil cleaner or alkaline detergent solution such as 409.

NOTE: Do not use acid based cleaners, aromatic solvents, temperatures in excess of 170° F or steam. Damage to the wheel may result.

3. Rinse wheel thoroughly after application of the cleaning solution, and allow to drain before reinstalling.

4. No re-lubrication is required to heat wheel bearings of the drive motor, or to the intake and exhaust blower motors.

5. If any belt chirping or squealing noise is present, apply a small amount of LPS-1 or equivalent dry film lubricant to the belt.

FIGURE 12

BELT REPLACEMENT INSTRUCTIONS