## **INSTALLATION INSTRUCTIONS** # WALL MOUNTED PACKAGED AIR CONDITIONERS MODELS MAC36AS COPYRIGHT JULY, 1989 BARD MANUFACTURING COMPANY BRYAN, OHIO ### INDEX | Fresh A<br>Wall Mou<br>Wiring-<br>Fan Blac<br>Refriger | ation rk . Ir In untin -Main de Se | tak<br>g .<br>tti<br>Cha | e<br>ng | | i<br>i | ens | s i c | | · · · · · · · · · · · · · · · · · · · | • | • | | | | | • • • • • • • • | • | | | | | • | • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | | | • | <br> | • | • | <br>33344466 | |--------------------------------------------------------|------------------------------------|--------------------------|---------|-----|--------|-----|-------|---|---------------------------------------|---|---|---|---|---|---|-----------------|---|---|---|---|---|---|-----------------|-----------------------------------------|---|---|---|------|---|---|--------------| | Importa<br>Pressure<br>Indoor E | e Ser | vic | :e | Pot | rt | S | | • | • | • | • | • | • | • | • | • | | • | • | • | • | | | | | | | | | | 7 | | Figure 1<br>Figure 2<br>Figure 3 | | | • | • | • | • | • | • | | | • | | | | • | • | | | | | | • | | | | • | • | | • | | | | Table 1 Table 2 Table 3 Table 4 Table 5 | | | • | • | • | : | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | : | • | • | • | : | • | : | 7 | SAIN FIGURE 1 | TABLE | 1 | |--------|---| | LADIIR | ı | | | TABLE 1 SPECIFICATION | 5 | <u> </u> | | | | | | | |--------------------------------------|-----------------------|-------------|-------------|-------------|--|--|--|--|--| | MODEL | | MAC36AS-A05 | MAC36AS-A10 | MAC36AS-A15 | | | | | | | Heater KW @240/208V | NONE | 5/3.75 | 10/7.5 | 15*/11.25 | | | | | | | Cooling Capacity Btuh | 35,400 | 35,400 | 35,400 | 35,400 | | | | | | | | | 19,000/ | 36,000/ | 53,000/ | | | | | | | Heating Capacity Btuh++ | NONE | 15,000 | 27,000 | 40,000 | | | | | | | Blectrical Rating60HZ | 230/208-1 | 230/208-1 | 230/208-1 | 230/208-1 | | | | | | | Operating Voltage Range | 197-253 | 197-253 | 197-253 | 197-253 | | | | | | | Minimum Circuit Ampacity | 31 | 31 | 57 | 83 | | | | | | | No. Field Power Ckts. | 1 | 1 | 1 | 1 | | | | | | | **Field Wire Size | #8 | #8 | #4 | #2 | | | | | | | Ground Wire Size | #10 | #10 | #10 | #8 | | | | | | | ***Req'd Max. External Puses | 50 | 50 | 60 | 90+ | | | | | | | Total Unit Amps 240/208 | 23.3/24.8 | 24.7/24.8 | <del></del> | 66.4/58.0 | | | | | | | Internal Fuses (Standard) | NONB | NONE | NONE | 60/30 | | | | | | | Internal Circuit Breakers | | | | | | | | | | | (Option C) | 50 | 50 | 60 | 60, 30 | | | | | | | CompressorCircuit A | <del></del> - | | | | | | | | | | Volts | 230/208 | | | | | | | | | | Rated Load Amps 230/208 | 18/19.5 | | | | | | | | | | Branch Circuit Selection Current | | | | | | | | | | | Lock Rotor Amps | | 107/ | | | | | | | | | Fan Motor & Condenser | 1077.107 | | | | | | | | | | Fan MotorHP/RPM | 1/5/1050 | | | | | | | | | | Fan MotorAmps | | 1.4 | | | | | | | | | FanDIA/CFM | | 20"/ | 1800 | | | | | | | | Face Area | | | | | | | | | | | Sq Ft/Row/Fins per inch | 1 | 4.7/ | 2/12 | | | | | | | | Motor and Evaporator | <del></del> | | | | | | | | | | Blower MotorHP/RPM | 1 | 1/2/ | 1600 | | | | | | | | Blower MotorAmps | T | 3.9 | | | | | | | | | CFM Cooling & B.S.P. | | | | | | | | | | | w/Filter (Rated) (Hi) | 1 | 1060 | /.15 | | | | | | | | Face Area | 1 | | | | | | | | | | Sq Ft/Row/Fins per inch | - | 2.7/ | 2/13 | | | | | | | | Filter Sizes (inches) | | 14x2 | | | | | | | | | Refrigerant 22oz. | 1 | 54 | | | | | | | | | Shipping Weight-lbs. | 1 | 315 | | | | | | | | | *15KW models must be installed usi | ing high sneed | | | | | | | | | | **60 degree C copper wire size. | upco | | | | | | | | | | ***Maximum time delay fuse or HACR t | wne circuit i | hreaker | | | | | | | | Specifications subject to change without notice. #### Nomenclature Explanation #### IMPORTANT While this electrical data is presented as a guide, it is important to electrically connect, properly sized fuses and conductor wires in accordance with the National Electrical Code and all existing local codes. <sup>+</sup>Sizes 70A or greater are not HACR type. <sup>++</sup>Includes blower motor. #### IMPORTANT The equipment covered in this manual is to be installed by trained, experienced service and installation technicians. Any heat pump is more critical of proper operating, charge and an adequate duct system than a straight air conditioning unit. All duct work supply and return, must be properly sized for the design air flow requirement of the equipment. ACCA is an excellent guide to proper sizing. All duct work or portions thereof not in the conditioned space should be properly insulated in order to both conserve energy and prevent condensation or moisture damage. #### SHIPPING DAMAGE Upon receipt of equipment, the carton should be checked for external signs of shipping damage. If damage is found, the receiving party must contact the last carrier immediately, preferably in writing, requesting inspection by the carrier's agent. #### **GENERAL** The refrigerant system is completely assembled and charged. All internal wiring is complete. The unit is designed for use with or without duct work. Flanges are provided for attaching the supply and return ducts. These instructions explain the recommended method to install the air cooled self-contained unit and the electrical wiring connections to the unit. These instructions and any instructions packaged with any separate equipment required to make up the entire air conditioning system should be carefully read before beginning the installation. Note particularly "Starting Procedure" and any tags and/or labels attached to the equipment. While these instructions are intended as a general recommended guide, they do not supersede any national and/or local codes in any way. Authorities having jurisdiction should be consulted before the installation is made. #### INSTALLATION Size of unit for a proposed installation should be based on heat loss calculation made according to methods of Air Conditioning Contractors of America (ACCA). The air duct should be installed in accordance with the Standards of the National Fire Protection Association for the Installation of Air Conditioning and ventilating systems of Other Than Residence Type, NFPA No. 90A, and Residence Type Warm Air Heating and Air Conditioning System, NFPA No. 90B. Where local regulations are a variance with instructions, installer should adhere to local codes. #### DUCT WORK Design the duct work according to methods given by the Air Conditioning Contractors of America. When duct runs through unheated spaces, it should be insulated with a minimum of one inch of insulation. Use insulation with a vapor barrier on the outside of the insulation. Flexible joints should be used to connect the duct work to the equipment in order to keep the noise transmission to a minimum. A one-inch clearance to combustible material for the first three feet of duct attached to the outlet air frame is required. See Figure 2, Page 5 for further details. #### FILTER A one inch throwaway filter is supplied with each unit. The filter slides into position making it easy to service. This filter can be serviced from the outside by removing the service door. #### FRESH AIR INTAKE All units are built with a fresh air inlet opening punched in the left unit side. This opening is covered by a factory installed blank off plate, model BOP20. A fresh air damper assembly, model FAD2O, may be ordered separately to accommodate the variety of state and local codes requiring fresh air capability. All capacity, efficiency and cost of operation information as required for Department of Energy "EnergyGuide" fact sheets is based on the fresh air blank off plate being in place and is recommended for maximum energy efficiency. #### WALL MOUNTING - 1. Two holes, for the supply and return air openings must be cut through the wall as shown in Figure 2. - 2. On wood-frame walls, the wall construction must be strong and rigid enough to carry the weight of the unit without transmitting any unit vibration. MARNING: Fire hazard can result if one inch clearance to combustible material for supply air duct maintained. See Figure 2. - 3. Concrete block walls must be thoroughly inspected to insure that they are capable of carrying the weight of the installing unit. - 4. Ducts through the walls must be insulated and all joints taped or sealed to prevent air or moisture entering the wall cavity. - 5. Some installations may not require any return air duct. It is recommended that on this type of installation that filter grille be located in the wall. Filters must be of sufficient size to allow a maximum velocity of 400 FPM. NOTE: If no return air duct is used, applicable installation codes may limit this cabinet to installation only in a single story structure. #### WIRING--MAIN POWER Refer to the unit rating plate for wire sizing information and maximum fuse or "HACR Type" circuit breaker size. Each outdoor unit is marked with a "Minimum Circuit Ampacity." This means that the field wiring used must be sized to carry that amount of current. Some models are suitable for connection with copper wire, while others can be wired with either copper or aluminum wire. Each unit and/or wiring diagram will be marked "Use Copper Conductors Only" or "Use Copper or Aluminum Conductors." These instructions MUST BE adhered to. Refer to the National Electrical Code for complete current carrying capacity data on the various insulation grades of wiring material. The electrical data lists fuse and wire sizes (60 degree C copper) for all models, including the most commonly used heater sizes. The unit rating plate lists a "Maximum Time Delay Relay Fuse" or "HACR Type" circuit breaker that is to be used with the equipment. The correct size must be used for proper circuit protection and also to assure that there will be no nuisance tripping due to the momentary high starting current of the compressor motor. #### MOUNTING INSTRUCTIONS - These units are secured by wall mounting brackets which secure the unit to the outside wall surface at both sides and at the bottom. - 2. The unit itself is suitable for "0" inch clearance, but the supply air duct flange and the first three feet of supply air duct require 1 inch clearance to combustible material. If combustible wall, use 30" x 10" dimensions for sizing, if non-combustible, use 28" x 8" dimensions. MARNING: Failure to provide the one inch clearance for the first three feet between the supply duct and a combustible surface can result in fire. \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* - After the wall opening positions have been selected, lay out the position for the bottom and side brackets. Pasten the brackets securely to the wall (type of fasteners will depend on wall construction). - 4. Be sure to observe the 10" dimension when attaching the side brackets. This will assure that no screws are driven into the unit sides damaging any internal parts. One-half inch sheet metal screws are recommended. - 5. For additional mounting rigidity, the return air and supply air (depending upon wall construction) frames or collars can be drilled and screwed or welded to the structural wall itself. Be sure to observe required clearance if combustible wall. - Maintain 30 inches minimum clearance on right side of unit to allow access to heat strip and control panel. #### FAN BLADE SETTING DIMENSIONS Shown in the drawing below are the correct fan blade setting dimensions for proper air delivery across the outdoor coil. Any service work requiring removal or adjustment in the fan and/or motor area will require that the dimensions below be checked and blade adjusted in or out on the motor shaft accordingly. FIGURE 3 | Model | Din. Å | |---------|--------| | MAC36AS | 1-1/2 | #### REFRIGERANT CHARGE The correct system R-22 charge is shown on the unit rating plate. Optimum unit performance will occur with a refrigerant charge resulting in a suction line temperature (6" from compressor) as shown in the following table: | | TABLE 2 | | | | | | | | | | | |---------|-------------------|-----------------------------|-----------------------------|--|--|--|--|--|--|--|--| | Model | Rated<br>Air Flow | o<br>95 F OD<br>Temperature | o<br>82 F OD<br>Temperature | | | | | | | | | | MAC36AS | 1060 | 49 - 51 | 55 - 57 | | | | | | | | | The above suction line temperatures are based upon 80 degree F dry bulb/67 degree wet bulb (50% R.H.) temperature and rated airflow across the evaporator during cooling cycle. TABLE 3 | RATED CFM B.S.P. (WET COILCOOLING) | | | | | | | | | | |------------------------------------|--------------|-----------------|------------------------------|--|--|--|--|--|--| | Model | Rated<br>CFM | Rated<br>B.S.P. | Recommended<br>Airflow Range | | | | | | | | MAC36AS | 1060 | .15 | 900 - 1160 | | | | | | | #### IMPORTANT INSTALLER NOTE For improved start-up performance wash the indoor coil with a dishwasher detergent. #### PRESSURE SERVICE PORTS High and low pressure service ports are installed on all units so that the system operating pressures can be observed. Pressure tables can be found later in the manual covering all models on both cooling and heating cycles. It is imperative to match the correct pressure table to the unit by model number. #### INDOOR BLOWER PERFORMANCE All units are factory shipped wired on high speed tap. If low static operation is needed, low speed may be used for all except 15KW models. All 15KW models must be applied using high speed only. Refer to the chart below for CFM outputs at various E.S.P. conditions. TABLE 4 | T. | IBLE 4 | | | | | | | | | |---------------------------|----------------|-----|--|--|--|--|--|--|--| | INDOOR BLOWER PERFORMANCE | | | | | | | | | | | CFM - Dry Coil | | | | | | | | | | | B.S.P. | B.S.P. MAC36AS | | | | | | | | | | Inches H20 | High | Low | | | | | | | | | | | | | | | | | | | | .0 | 1200 | 975 | | | | | | | | | .10 | 1160 | 930 | | | | | | | | | .20 | 1120 | 900 | | | | | | | | | .30 | 1075 | | | | | | | | | | .40 | 1035 | | | | | | | | | | .50 | 970 | | | | | | | | | | | | | | | | | | | | | *MAC36AS models with 15KW | | | | | | | | | | | electric he | at must | use | | | | | | | | | high speed only. | | | | | | | | | | If this unit is operated in cooling below a 65 degree outdoor ambient temperature, the installation of low ambient control (LAC-1) to unit is required. TABLE 5 #### COOLING Air Temperature Entering Outdoor Coil Degree F | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |-------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Return Air | | 75 | 80 | 85 | 90 | 95 | 100 | 105 | 110 | 115 | | Temperature | Pressure | | | | | | | | | | | 75 deg. DB | Low Side | 63 | 65 | 66 | 68 | 71 | 73 | 75 | 78 | 79 | | 62 deg. WB | High Side | 224 | 240 | 259 | 278 | 294 | 315 | 331 | 351 | 372 | | 80 deg. DB | Low Side | 67 | 69 | 71 | 73 | 76 | 78 | 80 | 83 | 85 | | 67 deg. WB | High Side | 230 | 246 | 266 | 285 | 302 | 323 | 340 | 360 | 382 | | 85 deg. DB | Low Side | 72 | 74 | 76 | 78 | 82 | 84 | 86 . | 89 | 91 | | 72 deq. WB | High Side | 238 | 255 | 275 | 295 | 313 | 334 | 352 | _373 | 395 | | | 75 deg. DB<br>62 deg. WB<br>80 deg. DB<br>67 deg. WB<br>85 deg. DB | Temperature Pressure 75 deg. DB Low Side 62 deq. WB High Side 80 deg. DB Low Side 67 deq. WB High Side 85 deg. DB Low Side | Return Air 75 Temperature Pressure 75 deg. DB Low Side 63 62 deq. WB High Side 224 80 deg. DB Low Side 67 67 deq. WB High Side 230 85 deg. DB Low Side 72 | Return Air Temperature Pressure 75 deg. DB Low Side 63 65 62 deg. WB High Side 224 240 80 deg. DB Low Side 67 69 67 deg. WB High Side 230 246 85 deg. DB Low Side 72 74 | Return Air Pressure 75 80 85 | Return Air Temperature Pressure 75 deg. DB Low Side 63 65 66 68 62 deq. WB High Side 224 240 259 278 80 deg. DB Low Side 67 69 71 73 67 deq. WB High Side 230 246 266 285 85 deg. DB Low Side 72 74 76 78 | Return Air Temperature Pressure Temperature Pressure To 80 85 90 95 95 | Return Air Temperature Pressure | Return Air Temperature Pressure Pressure Pressure To deg. DB Low Side 63 65 66 68 71 73 75 62 deg. DB Low Side 67 69 71 73 76 78 80 67 deg. WB High Side 230 246 266 285 302 323 340 85 deg. DB Low Side 72 74 76 78 82 84 86 | Return Air<br>Temperature Pressure 0 0 0 0 0 0 0 0 0 0 0 0 0 100 105 110 75 deg. DB Low Side 63 65 66 68 71 73 75 78 62 deq. WB High Side 224 240 259 278 294 315 331 351 80 deg. DB Low Side 67 69 71 73 76 78 80 83 67 deq. WB High Side 230 246 266 285 302 323 340 360 85 deg. DB Low Side 72 74 76 78 82 84 86 89 | Low side pressure ± 2 PSIG High side pressure ± 5 PSIG Tables are based upon rated CFM (airflow) across the evaporator coil. If there is any doubt as to correct operating charge being in the system, the charge should be removed, system evacuated, and recharged to serial plate instructions. #### PARTS LIST SINGLE PACKAGE AIR CONDITIONERS Page: A2 Date: 07/05/89 М M M M A Ą A A A C C C C C C C 3 3 3 3 3 3 3 3 6 6 6 6 6 6 6 6 Part No. Description A A A A A A A A S S S S S S S Á Å A 0 1 1 0 0 1 1 5 0 5 0 5 0 5 1 C C C C 4081-112 Wiring Diagram Х 4081-113 Wiring Diagram Х Wiring Diagram 4081-122 X 4081-123 Wiring Diagram 4081-132 Wiring Diagram X 4081-133 Wiring Diagram X 4081-142 Wiring Diagram X 4081-143 Wiring Diagram 5051-048 Condenser Coil X X X 5060-048 Evaporator Coil X X X X Х X X Х 5151-032 Fan Blade X X X X X X X X 5152-054 Blower Housing X ĸ X X X X X X Blower Wheel 5152-055 X X Х X Х X Х X 5152-056 Blower Wheel X X X X X X X X Filter 14x25x1 7004-006 X X X X Х Х X X 7051-021 Grille--Condenser X X X X X X X X 7051-022 Grille--Inlet X X X X X X X X 8000-109 Compressor ZR40K1-PFV X X X X X X X X 8103-019 Motor--Condenser X X X X X X Х X 8106-022 Motor--Evaporator X X X X X X X X 8200-001 Motor Mount--Pan X X X X X X X 8200-032 Motor Mount--Blower X Х X X Х X X 8201-009 Relay--Blower X X X X X X Х X 8401-002 Contactor X 8401-006 Contactor X Х Х Х 8401-007 Contactor Х Х X Х Х X X Х 2 8402-030 Thermal Cutoff 1 2 3 1 3 8402-049 Limit Control X X X X X X 8407-034 Transformer X X X X X X Х X 8552-002 Capacitor 5/370V X X X X X Х X X 8552-004 Capacitor 7-1/2 / 370V Х X х X Х X Х Х 8552-028 Capacitor 35/440V X X X X X X X 8604-047 Heat Strip 15KW 1 1 8604-089 Heat Strip 5KW 1 1 8604-091 Heat Strip 10KW 1 1 8607-013 Terminal Block X X 8607-018 Terminal Board X X X X X X 8614-006 Puse 0T30 2 8614-017 Puse Block 15KW 1 8614-022 Fuse TR60 2 8615-015 Circuit Breaker 1 1 8615-013 Circuit Breaker 1 8615-014 Circuit Breaker 8615-016 Circuit Breaker | | | _ | |--|--|---| | | | | | | | | | | | | | | | | | | | • | | | | | | | | | | | | | | | | _ | | | | |