INSTALLATION INSTRUCTIONS # SPLIT AIR CONDITIONER OUTDOOR SECTION ## **MODELS** | 18ECQ4 | 36ECQ5 | 60ECQ1 | |---------------|---------------|---------------| | 24ECQ5 | 42ECQ1 | _ | | 30ECQ5 | 48ECQ2 | | 60HZ/50HZ FOR USE WITH: MATCHING INDOOR BLOWER COIL UNITS AND MATCHING ADD ON COIL UNITS ONLY MANUAL 2100-133 REV. P SUPERSEDES REV. N FILE VOL. I, TAB 4 COPYRIGHT FEBRUARY, 1989 BARD MANUFACTURING COMPANY BRYAN, OHIO ### TABLE OF CONTENTS | I. | Application and Location | | |------|--|------------------------------| | | Field Fabricated Tubing Connections: Swe
Connect Outdoor Unit Using CTO kit | eat Indoor Unit and Quick 10 | | II. | Wiring Instructions | | | III. | Charging Instructions | | | IV. | Service | | ### FIGURES AND TABLES | Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6 | • | • | • | • | • | • | • | | • | • | • | • | • | | • | • | • | | • | • | • | | • |
• | • | | | | |
6
7
8
13 | |--|-------|---|---|---|---|---|-----------------------| | Table 1 | Table 2 | Table 3 | Table 4 | • | | | | Table 4A | Table 4B | • | | | | Table 6 | Table 7 | • | • | | | | Table 9 | • | | | | Table 10 | Table 11 | Table 12 | Table 13 | Table 14 | Table 15 | Table 16 | Table 17 | Table 18 | | | | | | ٠ | | • | | | | | | ٠ | • | ٠ | | ٠ | | | | | | | | ٠ | • | • | • | 2 | | Table 19 | | | • | • | | | | | | | | • | | | | | | | | | | • | | | | | | | | 2 | | Table 20 | 2 | FIGURE 1 NOMENCLATURE EXPLANATION - Example: | TABLE 1 | CONDENSING UNI | TSDimension | s (Inches) | |----------------|----------------|-------------|------------| | Model | Width | Depth | Height | | Mumber | "₩" | "D" | "H" | | 18 E CQ | | | | | 24BCQ | 36 | 18 | 21 | | 30ECQ | | | | | 36ECQ | 40 | 18 | 22-5/8 | | 42ECQ | | | | | 48BCQ | 48 | 18 | 30-3/4 | | 60BCQ | 1 | | | TABLE 2 CAPACITY AND EFFICIENCY RATINGS | 1 ADUS Z | | 20 | | | | | |------------|---------|------|----------|--------|------|--------------| | | Indoor | | | Rat | ted | Indoor Coil | | Condensing | Coil | | | Airi | low | Refrigerant | | Unit Model | Model | | · · | | (1) | Control | | Number | Number | Type | Speed | CFM | H20 | Orifice Size | | 18ECQ4 | BC24B | В | L | 650 | . 40 | .052 < | | 24BCQ5 | A30AQ-A | À | | 875 | .15 | .063 | | | BC24B | В | Ħ | 800 | ,35 | .059 | | [| A30AQ-A | A | | 1000 | .20 | .063 | | 30BCQ5 | BC30B | В | H | 825 | .10 | .063 | | | BC35B | В | Ħ | 1050 | .50 | Cap Tube | | <u> </u> | BC36B | В | H | 1050 | .60 | .072 | | • | A36AQ-A | A | | 1200 | . 30 | .069 < | | 36BCQ5 | BC35B | В | H | 1275 | . 40 | Cap Tube | | | BC36B | В | H | 1275 | .50 | .072 | | | A42AQ-A | A | | 1450 | .30 | .078 | | 42BCQ1 | A48AQ-A | A | | 1450 | .50 | .078 < | | | BC48A | В | L | 1575 | 40 | Cap Tube | | | BC48B | В | ե | 1525 | . 35 | .078 | | | A48AQ-A | À | | 1500 | . 25 | .081 | | 48BCQ2 | BC48A | В | H | 1725 | .30 | Cap Tube | | | BC48B | В | <u>H</u> | 1700 _ | 25 | .078 | | | BC60B | В | H | 1700 | . 45 | .078 < | | | A60AQ-A | A | | 1920 | 30 | .092 | | 60BCQ1 | BC48A | В | <u>H</u> | 1625 | 30 | Cap Tube | | | BC60A | В | H | 1800 | .30 | Cap Tube | | | BC60B | В | В | 1800 | .20 | .092 | | | | | | | | | - (1) Static pressure loss for add-on coils and available static pressure for duct system on blower coils. - Installer must change indoor coil refrigerant control orifice for system match as listed. Correct orifice shipped with outdoor unit. TABLE 3 CAPACITY AND REFICIENCY RATINGS | TABLE 3 | | <u></u> | APACITY AND |) REFICIRE | CI KAIII | 165 | |----------------------|--------------|---------|-------------|------------|--------------|--------------| | | Indoor Rated | | | ed | Indoor Coil | | | Condensing | Coil | | • | Airfl | low | Refrigerant | | Unit Model | Model | j | • | | (1) | Control | | Number | Number | Type | Speed | CEM | H20 | Orifice Size | | 18ECQ4-D | BC24B | В | Ħ | 630 | .35 | .052 < | | 248CQ5-D | BC24B | В | Ħ | 700 | .15 | .059 | | 36BCQ5-D | BC35B | В | Ħ | 1080 | .15 | Cap Tube | | | BC36B | В | Ħ | 1080 | .15 | .072 | | 37ECQ1-E | BC35B | В | Ħ | 1080 | .15 | Cap Tube | | | всз6в | В | Ħ | 1080 | .15 | .072 | | 42ECQ1-D
42ECQ1-E | BC48A | В | Ħ | 1350 | .45 | Cap Tube | | 42BCQ1-F | BC48B | В | L | 1270 | .35 | .078 | | 48ECQ2-G
48ECQ2-E | BC48A | B
 | H | 1350 | , 4 5 | Cap Tube | | 48ECQ2-F | BC48B | В | H | 1400 | .25 | .078 | | 60BCQ1-G
60BCQ1-B | BC6OA | В | H | 1350 | .45 | Cap Tube | | 60ECQ1-F | BC60B | В | H | 1500 | .20 | .092 | ⁽¹⁾ Static pressure loss for add-on coils and available static pressure for duct system on blower coils. Installer must change indoor coil refrigerant control orifice for system match as listed. Correct orifice shipped with outdoor unit. TABLE 4 SPECIFICATIONS--SPLIT AIR CONDITIONING | PURCHE LOUIS PURIT WIN COMPILIONING | | | | | _ | | _ | | | |--|---------------------------|-----------|-----------|-----------|----------|----------|----------|--|--| | MODEL | 18ECQ4 | 24ECQ5 | 30ECQ5 | 5 | 42ECQ1 | 48ECQ2 | 60ECQ1 | | | | Blectrical Rating (60Hz/V/Ph) | 230/208 | 230/208 | 230/208 | .08 | 230/208 | 230/208 | 230/208 | | | | <u> </u> | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | Operating Voltage Range | . 37-253 | 197-253 | 197-253 | 197-253 | 197-253 | 197-253 | 197-253 | | | | Minimum Circuit Ampacity | 12.8 | 17.8 | 20.4 | 29 | 30 | 32 | 39 | | | | +Field Wire Size | #14 | #12 | #10 | #10 | #10 | #8 | #8 | | | | ++Delay Fuse Max or Ckt Bkr | 20 | 30 | 35 | 50 | 50 | 50 | 60 | | | | Total Unit Amps 230/208 | 9.6/10.6 | 12.6/14.6 | 15.6/16.6 | 20.6/23.6 | 24.3 | 23.0 | 31.8 | | | | COMPRESSOR | | | | | | | | | | | Volts | 230/208 | 230/208 | 230/208 | 230/208 | 230/208 | 230/208 | 230/208 | | | | Rated Load Amps 230/208 | 8/9_ | 11/13 | 14/15 | 19/22 | 21.5 | 23 | 29 | | | | Branch Circuit Selection Current | 9 | 13 | 15 | 22 | 21.5 | 23 | 29 | | | | Lock Rotor Amps 230/208 | 49/49 | 60/60 | 90/90 | 108/108 | 95.4 | 130 | 132 | | | | Cranckcase Heat | Cranckcase Heat Immersion | | | | | | | | | | FAN MOTOR AND CONDENSER | | | | | | | | | | | Fan MotorHP/RPM | 1/5 | - 1075 | 1/5 | - 1050 | | 1/3-825 | | | | | Fan MotorAmps | 1.5 | 1.5 | 1.6 | 1.6 | 2.8 | 2.8 | 2.8 | | | | FanDia./CFM | 18" | - 1970 | 20"-2700 | 20"-2753 | 24"-3750 | 24"-3750 | 24"-3350 | | | | Face Area Sq. Ft./Rows/Fins Per Inch | 3.75 | /2/18 | 5.04/2/13 | 5.04/2/13 | 7.7/ | 2/15 | 7.7/3/14 | | | | REFRIGERANT CONNECTION & CHARGE | | | | | - | | | | | | QUICK CONNECT SYSTEM | i | | | | | | | | | | Suction Line Fitting | -10 | -10 | -10 | -10 | -12 | -12 | -12 | | | | Liquid Line Fitting | -6 | -6 | -6 | -6 | -6 | -6 | -6 | | | | Factory Charge R-22 (Oz.) | 29 | 40 | 50 | 58 | 84 | 86.5 | 101 | | | | Shipping Weight lbs. | 128 | 140 | 170 | 190 | 230 | 275 | 300 | | | | + 60°C Copper wire size. | | | | | | | | | | | ++ Maximum time delay fuse or HACR Typ | e circuit | breaker. | | | | | | | | | | | | | | | | | | | TABLE 4A SPECIFICATIONS--SPLIT AIR CONDITIONING | PURCIFICATIONSSURIT WIN COMPITIONING | | | | | , | | | |--------------------------------------|----------|----------|----------|----------|--------------|-----------|----------| | MODEL | 18ECQ4-D | 248CQ5-D | 36ECQ5-D | 37ECQ1-E | 42BCQ1-D | 42ECQ1-E | 42ECQ1-F | | Blectrical Rating (50Hz/V/Ph) | 240/220 | 240/220 | 240/220 | 240/200 | 240/220 | 240/200 | 415/380 | | | 1 | 1 | 1 | 3 | 11 | 3_ | 3 | | Operating Voltage Range | 198-254 | 198-254 | 198-254 | 180-254 | 198-254 | 180-254 | 342-456 | | Minimum Circuit Ampacity | 11 | 14 | 21 | 20 | 21 | 20 | 15 | | Delay Fuse Max or Circuit Breaker | 15 | 20 | 35 | 30 | 35 | 30 | 15 | | Total Unit Amps | 8.5 | 11.5 | 17 | 15.8 | 17.2 | 15.7 | 9.7 | | COMPRESSOR | | | | • | | | | | Volts | 240/220 | 240/220 | 240/220 | 240/200 | 240/220 | 240/200 | 415/380 | | Rated Load Amps | 7 | 10 | 15.5 | 14.3 | 15.5 | 14 | 8 | | Branch Circuit Selection Current | 7 | _10 | 15.5 | 14.3 | 15.5 | 14 | 8 | | Lock Rotor Amps | 46.5 | 54 | 68 | 74 | 68 | 82 | 41 | | FAN MOTOR AND CONDENSER | | | | | | | | | Fan MotorHP/RPM | 1/5 | - 1100 | 1/5 - | 1050 | | 1/3 - 900 | | | Fan MotorAmps | 1 | .5 | 1 | .5 | | 1.7 | | | FanDia./CFM | 18" - | 1950 | 20" - | 1950 | | 24" - 340 | 0 | | Face Area Sq. Ft./Rows/Fins Per Inch | 3.75/ | 2/18 | 5.04 | /2/13 | 7.7/2/15 | | | | Factory Charge R-22 (Oz.) | 29 | 40 | 58 | 59 | 84 | 84 | 84 | | Shipping Weight 1bs. | 128 | 140 | 190 | 190 | 225 | 225 | 225 | TABLE 4B | SPRCIFICATIONS- | -SPLIT | AIR | -CONDITION ING |
-----------------|--------|-----|----------------| | DIRECTION DI DITT AIR COMPTITONINO | | | | | | | | | | |--------------------------------------|------------|----------|----------|----------|----------|----------|--|--|--| | MODEL | 48ECQ2-G | 48ECQ2-E | 48ECQ2-F | 60ECQ1-G | 60ECQ1-E | 60ECQ1-F | | | | | Blectrical Rating (50Hz/V/Ph) | 220/200 | 240/200 | 415/380 | 220/200 | 240/200 | 415/380 | | | | | | 1 | 3 | 3 | 1 | 3 | 3 | | | | | Operating Voltage Range | 180-242 | 180-254 | 342-456 | 180-242 | 180-254 | 342-456 | | | | | Minimum Circuit Ampacity | 30 | 24 | 15 | 45 | 27 | 15 | | | | | Delay Fuse Max or Circuit Breaker | 50 | 35 | 20 | 70 | 45 | 25 | | | | | Total Unit Amps | 24.4 | 18.2 | 11.7 | 36.2 | 21.9 | 12.3 | | | | | COMPRESSOR | | | | | | | | | | | Volts | 220/200 | 220/200 | 415/380 | 220/200 | 220/200 | 415/380 | | | | | Rated Load Amps | 22.7 | 16.5 | 10 | 34.5 | 20.2 | 10.6 | | | | | Branch Circuit Selection Current | 22.7 | 16.5 | 10 | 34.5 | 20.2 | 10.6 | | | | | Lock Rotor Amps | 115 | 93 | 47 | 179 | 135 | 70 | | | | | FAN MOTOR AND CONDENSER | | | | | | | | | | | Fan MotorHP/RPM | | | 1/3 | - 900 | | | | | | | Fan MotorAmps | | | 1 | .7 | | | | | | | FanDia./CFM | 24" - 3400 | | | | | | | | | | Face Area Sq. Ft./Rows/Fins Per Inch | 7.7/3/14 | | | | | | | | | | Factory Charge R-22 (Oz.) | 86.5 | 86.5 | 86.5 | 101 | 101 | 101 | | | | | Shipping Weight 1bs. | 276 | 276 | 276 | 295 | 295 | 295 | | | | | | | | | | | | | | | ### I. APPLICATION AND LOCATION ### **GENERAL** These instructions explain the recommended method to install the air cooled remote type condensing unit, the interconnecting refrigerant tubing, and the electrical wiring connections to the unit. The condensing units are to be used in conjunction with the matching evaporator coils or evaporator blower units for comfort cooling applications as shown in the specification sheet. These instructions and any instructions packaged with any separate equipment required to make up the entire air conditioning system should be carefully read before beginning the installation. Note particularly "Connecting Quick-Connect Couplings, Starting Procedure" and any tags and/or labels attached to the equipment. While these instructions are intended as a general recommended guide, they do not supersede any national and/or local codes in any way. Authorities having jurisdiction should be consulted before the installation is made. ### SHIPPING DAMAGE Upon receipt of equipment, the carton should be checked for external signs of shipping damage. If damage is found, the receiving party must contact the last carrier immediately, preferably in writing, requesting inspection by the carrier's agent. #### **APPLICATION** Size of unit for a proposed installation should be based on heat loss calculation made according to methods of Air Conditioning Contractors of America. The air duct should be installed in accordance with the Standards of the National Fire Protection Association for the Installation of Air Conditioning and Ventilating Systems of Other Than Residence Type, NFPA No. 90A, and Residence Type Warm Air Heating and Air Conditioning Systems, NFPA 90B. Where local regulations are at a variance with instructions, installer should adhere to local codes. FIGURE 2 ### LOCATION The condensing unit is designed to be located outside with free and unobstructed condenser air inlet and discharge. It must also permit access for service and installation. Refrigerant and electrical connections are made from the rear of the unit as shown in Figure 2 with electrical service access on the left side. ### MOUNTING UNIT OUTSIDE ON SLAB A solid level base or platform, capable to support the unit's weight, must be set at the outdoor unit predetermined location. The base should be at least two inches larger than the base dimensions of the unit and at least two inches higher than surrounding grade level. The required unit minimum installed clearances must be maintained as called out in Figure 2 when locating and setting the base. Remove the unit from its shipping carton and position the unit on the prepared base or platform. Do not attach the unit or its base to the building structure to avoid the transmission of noise into the occupied area. NOTE: These units employ internally sprung compressors; therefore, it is not necessary to remove or loosen the base mounting bolts on the compressor prior to operation. Consideration should be given to the electrical and tubing connections when placing the unit to avoid unnecessary bends or length of material. ### IMPORTANT INSTALLER NOTE: For improved start-up performance, wash the indoor coil with a dishwater detergent. ### INSTALLING REFRIGERANT TUBING The information that follows on installing refrigerant tubing and for changing the system orifice (if required) covers applications listed in the front of this installation instruction only. Although other indoor units may be of similar construction, the installation instructions for these units should be consulted for proper installation of those units prior to installation. This information is provided for the field service personnel to install refrigerant tubing in compliance with Section 608 of Title VI National Recycling and Emission Reduction Program for the U.S. Clean Air Act effective July 1, 1992. Consult manual 2100-002 on procedure for leak test--evacuation--charging before installation refrigerant tubing that requires any refrigerant recovery or system evacuation. Manual 2100-002 is included with the unit installation instruction package when shipped from the factory. FIGURE 3 ### PRECHARGED TUBING CONNECTIONS: QUICK CONNECT INDOOR UNIT AND QUICK CONNECT OUTDOOR UNIT (1) Examine carefully the two lengths of precharged tubing furnished with the system. The larger is the suction line and the smaller is the liquid line. The end of the tubing with the hex nut and gauge port is to be attached to the outdoor unit. STEP 1--Unroll the tubing, being careful not to kink and route both the suction line and liquid line between the indoor unit and outdoor unit. Before fastening either end, use a tubing bender to make any necessary bends in tubing. When necessary to bend the insulated tube suction line, cut the insulation around its circumference at a distance far enough beyond the point of the bend so as to clear the tubing bender. Slip the insulation back together and vapor seal the joint with tape. Coil any excess tubing in a horizontal place with the slope of the tubing toward the condensing unit. CAUTION: 1. Be careful not to tear the insulation when pushing it through hole in masonry or frame walls. 2. When sealing the tube opening in house wall, use a soft material to prevent tube damage and vibration transmission. 3. Avoid excessive bending in any one place to avoid kinking. NOTE: DO NOT CONNECT LINE SETS! If orifice needs to be changed, change out orifice first. If the orifice does not have to be changed, skip the instructions outlined further in Step 2 and proceed to Step 9. STRP 2--To recover charge from the indoor unit. - A. Connect the suction line only to the indoor unit as outlined in Steps 9, 10, and 11. - B. Recover indoor unit and suction line unit charge through service port located on suction line. - STRP 3--Disassemble Flow Control Assembly by turning body hex. - STRP 4--If existing orifice has not dropped out of the body when disassembled, remove by using a pin or paper clip. Discard this original orifice. - STEP 5--Insert proper sized orifice fully into the flow control body with rounded "bullet" nose towards the unit as shown. Insure the orifice stays inserted in body before connecting mating half. See chart in the outdoor unit installation instructions for proper size. CAUTION: Be sure there is no dirt introduced into the flow control--orifice assembly. Be sure and install the orifice with the bullet nose pointing in the proper direction as shown in Figure 4. Failure to do so will result in improper operation. PIGURE 4 PLOW CONTROL ASSEMBLY FIELD ORIFICE REPLACEMENT INSTRUCTIONS - STEP 6--Thread assembly halves together by hand to insure proper mating of threads and tighten until bodies "bottom" or a definite resistance is felt. - STEP 7--Using a marker pen or ink pen, mark a line lengthwise from the union nut to the bulkhead. Then tighten an additional 1/6 turn (or 1 hex flat). The misalignment of the line will show the amount the assembly has been tightened. This final 1/6 turn is necessary to insure the formation of the leakproof joint. - STEP 8--Evacuate the suction line and indoor unit through service port located on suction line before connecting all other tubing. Refer to section later in installation instructions for details on setting the proper refrigerant charge. - STEP 9--Remove (remaining) protector caps and plugs (if orifice was changed), inspect fittings and if necessary carefully wipe coupling seats and threaded surfaces with a clean cloth to prevent the inclusion of dirt or any foreign material in the system. - STEP 10--Lubricate male half diaphragm and synthetic rubber seal with refrigerant oil. Starting with the indoor coil thread coupling halves together by hand to insure proper mating of threads. Be sure to hold the coupling firmly to prevent movement of the coupling and tubing. Failure to do so could tear out the diaphragm causing a blockage of the system. Use proper size wrenches (on coupling body hex and on union nut) and tighten until coupling bodies "bottom" or a definite resistance is felt. - CAUTION: After starting to tighten up the fitting, never try to back it off or take it apart. - STEP 11-Using a marker or ink pen, mark a line lengthwise from the coupling union nut to the bulkhead. Then tighten an additional 1/4 turn: The misalignment of the line will show the amount the coupling has been tightened. This final 1/4 turn is necessary to insure the formation of leak proof joint. If a torque wrench is used, the following
torque values are recommended: | TABLE 5 | | | | | | | | | |---------------|----------|--|--|--|--|--|--|--| | Coupling Size | Ft. Lbs. | | | | | | | | | -6 | 10 - 12 | | | | | | | | | -10 | 35 - 45 | | | | | | | | | -11 | 35 - 45 | | | | | | | | | -12 | 50 - 65 | | | | | | | | Repeat Step 10 and 11 on outdoor section making sure to locate the gauge port in a 45° angle from a vertical up position so as to be accessible for gauge connections. - STEP 12--Leak test all connections using an electronic leak detector or a halide torch. - STEP 13--When tubing is installed in attics or drop ceilings, insulate the couplings on the larger tube thoroughly with 3/8" wall thickness, closed cell sponge tube insulation or equivalent. Failure to insulate will result in water damage to ceiling since the fitting will "sweat" and drop water on the ceiling. - (1) NOTE: The maximum distance for precharge tubing between the outdoor and indoor unit is 45 feet. # FIELD FABRICATED TUBING CONNECTIONS: SWEAT INDOOR UNIT AND QUICK CONNECT OUTDOOR UNIT USING CTO KIT Use only refrigeration grade (dehydrated and sealed) copper tubing. Care must be taken to insure that the tubing is kept clean and dry before and during installation. Do not remove the plugs from the tubing ends, coil connections or base valves until the connection is ready to be brazed. The suction line must be insulated with a minimum of 3/8" Armaflex or equivalent before cutting and making connections. - STEP 1-Being careful not to kink, route both the suction line and liquid line between the indoor unit and outdoor unit. Use a tubing bender to make any necessary bends in tubing. When necessary to bend the insulated tube suction line, cut the insulation around its circumference at a distance far enough beyond the point of the bend so as to clear the tubing bender. Slip the insulation back together and vapor seal the joint with tape. Coil any excess tubing in a horizontal place with the slope of the tubing toward the condensing unit. - CAUTION: 1. Be careful not to tear the insulation when pushing it through hole in masonry or frame walls. 2. When sealing the tube opening in house wall, use a soft material to prevent tube damage and vibration transmission. 3. Avoid excessive bending in any one place to avoid kinking. - STEP 2--The tubing ends should be cut square. Make sure it is round and free of burrs at the connecting ends. Clean the tubing to prevent contaminants from entering the system. NOTE: On not braze lines to indoor unit or make any tubing connections at outdoor unit at this time. If the orifice does not have to be changed, skip the instructions outlined further in Step 3 and proceed to Step 8. - STEP 3--Disassemble Flow Control Assembly by turning body hex. - STEP 4--If existing orifice has not dropped out of the body when disassembled, remove by using a pin or paper clip. Discard this original orifice. - STEP 5-~Insert proper sized orifice fully into the flow control body with rounded "bullet" nose towards the unit as shown. Insure the orifice stays inserted in body before connecting mating half. See chart in the outdoor unit installation instructions for proper size. - CAUTION: Be sure there is no dirt introduced into the flow control--orifice assembly. Be sure and install the orifice with the bullet nose pointing in the proper direction as shown in Figure 4. Failure to do so will result in improper operation. - STEP 6--Thread assembly halves together by hand to insure proper mating of threads and tighten until bodies "bottom" or definite resistance is felt. - STEP 7--Using a marker pen or ink pen, mark a line lengthwise from the union nut to the bulkhead. Then tighten an additional 1/6 turn (or 1 hex flat). The misalignment of the line will show the amount the assembly has been tightened. This final 1/6 turn is necessary to insure the formation of the leakproof joint. - STEP 8--DO NOT make any tubing connection at outdoor unit at this time. Make all brazing of joints and evacuate both suction line, liquid line, and indoor coil first. Wrap a wet rag around the copper stub before brazing. STBP 9--Plux the copper tube and insert into the stub. Braze the joint using an alloy of silver or copper and phosphorus with a melting temperature above 1100°F for copper to copper joints. The phosphorus will act as a flux, therefore, no flux will be required. A copper-silver alloy with a high silver content should be used when iron or steel material is involved in the joint. These alloys require the use of silver solder flux. Alloys containing phosphorus should not be used with iron or steel. Phosphorus reacts with iron, forming iron phosphate which is extremely brittle. CAUTION: I. Brazing alloys with a melting temperature below 700°F should not be used. 2. Lead-tin or tin-antimony solders should not be used due to their low melting point and necessity for corrosive fluxes. To further prevent the formation of copper oxide inside the tubing, dry nitrogen may be purged through the refrigerant system during brazing. MARNING: Never purge or pressurize a system with oxygen. An explosion and fire will result. - STEP 10--After brazing, quench with wet rag to cool the joint and remove any flux residue. - STEP 11--Leak test all connections using an electronic leak detector or a halide torch. - STEP 12--Evacuate the suction line, liquid line, and indoor unit through service ports located on suction and liquid line before connecting to outdoor unit. Refer to section later in installation instructions for details on setting the proper refrigerant charge. - STEP 13--Remove (remaining) protector caps and plugs (on outdoor unit). Inspect fittings and if necessary carefully wipe coupling seats and threaded surfaces with a clean cloth to prevent the inclusion of dirt or any foreign material in the system. - STEP 14--Lubricate male half diaphragm and synthetic rubber seal with refrigerant oil. Start with the indoor coil, thread coupling halves together by hand to insure proper mating of threads. Be sure to hold the coupling firmly to prevent movement of the coupling and tubing. Failure to do so could tear out the diaphragm causing a blockage of the system. Use proper size wrenches (on coupling body hex and on union nut) and tighten until coupling bodies "bottom" or a definite resistance is felt. - CAUTION: After starting to tighten up the fitting, never try to back it off or take it apart. - STEP 15-Using a marker or ink pen, mark a line lengthwise from the coupling union nut to the bulkhead. Then tighten an additional 1/4 turn: The misalignment of the line will show the amount the coupling has been tightened. This final 1/4 turn is necessary to insure the formation of leak proof joint. If a torque wrench is used, the following torque values are recommended. | TABLE 6 | | |---------------|-----------------| | Coupling Size | Ft. Lbs. | | -6 | 10 - 12 | | -10 | 35 - 4 5 | | -11 | 35 - 45 | | -12 | 50 - 65 | STEP 16--Leak test all connections using an electronic leak detector or a halide torch. STEP 17--When tubing is installed in attics or drop ceilings, insulate the couplings on the larger tube thoroughly with 3/8" wall thickness, closed cell sponge tube insulation or equivalent. Failure to insulate will result in water damage to ceiling since the fitting will "sweat" and drop water on the ceiling. ### II. WIRING INSTRUCTIONS ### **GENERAL** All wiring must be installed in accordance with the National Electrical Code and local codes. In Canada, all wiring must be installed in accordance with the Canadian Electrical Code and in accordance with the regulations of the authorities having jurisdiction. Power supply voltage must conform to the voltage shown on the unit serial plate. A wiring diagram of the unit is attached to the inside of the electrical cover. The power supply shall be sized and fused according to the specifications supplied. A ground lug is supplied in the control compartment for equipment ground. The unit rating plate lists a "Maximum Time Delay Fuse" or "HACR Type" circuit breaker that is to be used with the equipment. The correct size must be used for proper circuit protection and also to assure that there will be no nuisance tripping due to the momentary high starting current of the compressor motor. ### CONTROL CIRCUIT WIRING For split systems, the minimum control circuit wiring gauge needed to insure proper operation of all controls in both indoor and outdoor units will depend on two factors. - 1. The rated VA of the control circuit transformer. - 2. The maximum total distance of the control circuit wiring. (This is the distance between the wall thermostat to the indoor unit plus the distance between the indoor unit to the outdoor unit.) The following table should be used to determine proper gauge of control circuit wiring required. | TABLE 7 | | | |-----------------|-------------|-----------------| | | | Maximum Total | | Rated VA of | Transformer | Distance of | | Control Circuit | Secondary | Control Circuit | | Transformer | PLA @ 24V | Wiring In Feet | | | | 20 gauge - 65 | | 40 | 1.6 | 18 gauge - 90 | | | | 16 gauge - 145 | | | | 14 gauge - 230 | | | | 20 gauge - 45 | | | | 18 gauge - 60 | | 50 | 2.1 | 16 gauge - 100 | | | | 14 gauge - 160 | | | | 12 gauge - 250 | | | | 20 gauge - 40 | | | | 18 gauge - 55 | | 65 | 2.7 | 16 gauge - 85 | | | Ì | 14 gauge - 135 | | | | 12 gauge - 210 | Example: 1. Control circuit transformer rated at 40VA. 2. Maximum total distance of control circuit wiring 85 feet. From the Table 7, minimum of 18 gauge wire should be used in the control circuit wiring. For control circuit transformers rated other then those listed, use the next lower rated transformer listed. Example: 1. Control circuit transformer rated at 55VA. From table use 50VA transformer, There are two (2) separate control diagrams for fossil fuel furnaces with air conditioners. Control diagrams for the various circuits which could be encountered with blower coils
can be found in the installation instructions of the blower coil. | T | AB. | ΓR | 8 | |---|-----|----|---| | | | | | | System | Gas Furnace
Control Diagram | Oil Furnace
Control Diagram | |------------|--------------------------------|--------------------------------| | All Models | 4091-100 | 4091-101 | ### CRANKCASE HEATERS All units are provided with some form of compressor crankcase heat. Some single phase units utilize the compressor motor start winding in series with a portion of the run capacitor to generate heat within the compressor shell to prevent liquid refrigerant migration. Some three phase units utilize a wraparound type of crankcase heater that warms the compressor oil from the outside. Some single and three phase models have an insertion well-type heater located in the lower section of the compressor housing. This is a self-regulating type heater that draws only enough power to maintain the compressor at a safe temperature. Some form of crankcase heat is essential to prevent liquid refrigerant migrating to the compressor causing oil pump out on compressor start-up and possible valve failure due to compressing a liquid. Refer to unit wiring diagram to find exact type of crankcase heater used. The decal in Figure 5 is affixed to all outdoor units detailing start-up procedure. This is very important, Please read carefully. FIGURE 5 # **IMPORTANT** THESE PROCEDURES MUST BE FOLLOWED AT INITIAL START-UP AND AT ANY TIME POWER HAS BEEN REMOVED FOR 12 HOURS OR LONGER. TO PREVENT COMPRESSOR DAMAGE WHICH MAY RESULT FROM THE PRESENCE OF LIQUID REFRIGERANT IN THE COMPRESSOR CRANKCASE - 1, MAKE CERTAIN THE ROOM THERMO-STAT IS IN THE "OFF" POSITION, (THE COMPRESSOR IS NOT TO OPERATE). - 2. APPLY POWER BY CLOSING THE SYSTEM DISCONNECT SWITCH. THIS ENERGIZES THE COMPRESSOR HEATER WHICH EVAPORATES THE LIQUID REFRIGERANT IN THE CRANKCASE. - 3. ALLOW 4 HOURS OR 80 MINUTES PER POUND OF REFRIGERANT IN THE SYS-TEM AS NOTED ON THE UNIT RATING PLATE, WHICHEVER IS GREATER. - 4. AFTER PROPERLY ELAPSED TIME THE THERMOSTAT MAY BE SET TO OPERTHE COMPRESSOR. - 5. EXCEPT AS REQUIRED FOR SAFETY WHILE SERVICING DO NOT OPEN SYSTEM DISCONNECT SWITCH. 7961-061 SET ADJUST HEAT ANTICIPATOR (SEE FURNACE INSTALLATION INSTRUCTIONS) INSTALL JUMPER R-RH FACTORY FIELD WIRING WIRING LOW VOLTAGE HIGH VOLTAGE AIR CONDITIONER W/GAS FURNACE 4091-100 A | | FACTORY | FIELD | |--------------|---------|--------| | | WIRING | WIRING | | LOW VOLTAGE | | | | HIGH VOLTAGE | | | SET ADJUST HEAT ANTICIPATOR (SEE FURNACE INSTALLATION INSTRUCTIONS) IF THE FURNACE IS NOT INTERNALLY VIRED FOR ADD ON AIR CONDITIONING, A FAN CENTER VILL NEED TO BE ADDED. AIR CONDITIONER W/OIL FURNACE 4091-101 A ### **WALL THERMOSTATS** The following wall thermostats and subbases should be used as indicated, depending on the application. TABLE 9 | AIR CONDITIONING THERMOSTATS | | | | |------------------------------|-----------|---|--| | Part No. | Model No. | Description | | | 8403-002 | T87F3111 | THERMOSTAT1 stg. heat, adj. heater, Mercury | | | 8404-003 | Q539A1220 | SUBBASESystem Heat-Off-Cool Fan: On-Auto | | | 8403-008 | ID51-605 | THERMOSTAT1 stg. cool, System w/Off Sw. Snap Action
Fan: Auto-On | | | 8403-009 | IF56-318 | THERMOSTAT1 st. cool, 1 stg. heat, Adj. heater Mercury System: Heat-Off-Cool Fan: Auto-On | | | 8403-019 | T874C1000 | THERMOSTAT1 stg. cool, 2 stg. heat, Adj. heater, Mercury | | | 8404-012 | Q674A1001 | SUBBASESystem: Heat-Auto-Cool
Fan: Auto-On | | ### III. CHARGING INSTRUCTIONS ### PRESSURE SERVICE PORTS High and low pressure service ports are installed on all units so that the system operating pressures can be observed. Pressure tables can be found later in the manual covering all models. It is imperative to match the correct pressure table to the unit by model number. The pressure service ports on the split system heat pump are located on the interconnecting tubing quick connect fittings. An additional low side service port is located on the quick connect mounting plate for low side pressure during heating operation. TABLE 10 | Model No. | Stub Tube* | 151 | 25 ′ | 35′ | 45′ | |-----------|-------------|-------------|-------------|-------------|-------------| | 18BCQ4 | CTO** | CT15 | RW25 | RW35 | RW45 | | 24BCQ5 | 3/8" & 3/4" | 1/4" & 5/8" | 1/4" & 5/8" | 1/4" & 5/8" | 1/4" & 5/8" | | 30BCQ5 | CTO** | CT15 | CT25 | CT35 | CT45 | | 36BCQ5 | 3/8" & 3/4" | 1/4 & 5/8" | 1/4 & 3/4" | 3/8" & 1 4" | 3/8" & 3/4" | | 42BCQI | | | | | , | | 48BCQ1 | CTO-12 | CT15-12 | CT25-12 | CT35-12 | CT45-12 | | 60BCQ1 | 3/8" & 7/8" | 3/8" & 7/8" | 3/8" & 7/8" | 3/8" & 7/8" | 3/8" & 7/8" | ### SYSTEM START-UP STEP 1--Close disconnect switch(es) and set the thermostat to cool and the temperature to the highest setting. STEP 2--Check for proper airflow across the indoor coil by referring to indoor unit installation instructions. - STEP 3--Connect the service gauges and allow the unit to run for at least 10 minutes or until pressures are stable. Check pressures to the system pressure table attached to the outdoor unit service panel. For optimum system performance, go to Step 4. - STBP 4--Install a thermometer on the suction line approximately 6" to 10" from the compressor. Optimum system performance will occur with a refrigerant charge resulting in a suction line superheat as determined from the following calculations. | À. | Measure outdoor air dry bulb temperature | <u> </u> | |----|---|-------------| | В. | Measure indoor air wet bulb temperature | <u>°Ę</u> | | C. | Measure suction pressure | PSIG | | D. | Measure suction line temperature | °F | | B. | Determine optimum system superheat from Table 12 using outdoor air dry bulb (Step B) and indoor air wet bulb (Step A). | | | F. | Determine saturated suction temperature from suction pressure using Table 11. | • <u>*</u> | | G. | Determine system superheat: Suction line temperature (Step D) - Saturated suction temperature (Step F) - System superheat | - <u>°F</u> | - H. Adjust the system superheat (Step G) to the optimum system superheat (Step E) by adding charge to lower the superheat or removing charge to raise the superheat. - I. Check final system operating pressures to the system pressure tables as was done in Step 3. | W1 1 | | |------|--| | | | | 11000 11 | _~ | | | |--------------------------------------|----------------------|--|--| | SATURATED SUCTION TEMPERATURE (R-22) | | | | | | Saturated Suction | | | | Suction Pressure PSIG | Temperature (Deg. F) | | | | 50 | 26 | | | | 53 | 28 | | | | 55 | 30 | | | | 58 | 32 | | | | 61 | 34 | | | | 63 | 36 | | | | 65 | 38 | | | | 67 | 39 | | | | 70 | 41 | | | | 73 | 43 | | | | 76 | 45 | | | | 79 | 47 | | | | 82 | 49 | | | | 86 | 51 | | | TABLE 12 | SYSTEM SUPERHEAT | | | | | |-------------------|------|---------|----------|------------| | Outdoor Ambient | Retu | n Air I | Cemperat | ure | | Temperature | De | eg. Fi | et Bull |) | | (Deg. F Dry Bulb) | 59 | 63 | _67 | 71 | | 105 | 1 | 1 | 5 | | | 95 | 1 | 3 | (8) | 20 | | 90 | 1 | 7 | 14 | 26 | | 85 | 3 | 9 | 19 | 3 3 | | 80 | 8 | 14 | 25 | 39 | | 75 | 10 | 20 | 30 | 42 | TABLE 13 | TABLE 13 | | | |-----------------|-----------------------|-------------------------| | | TOTAL SYSTEM OPERATI | | | | harge for the basic o | | | coil | and 25° of interconne | cting tubing) | | Outdoor Section | Indoor Section | Total R-22 Charge (Oz.) | | 18ECQ4 | BC24B | 37 | | | A30AQ-A | 51 | | 24ECQ5 | BC24B | 48 | | | A30AQ-A | 51 | | 30ECQ5 | BC30B | 58 | | | BC35B | 61 | | | BC36B | 66 | | | A36AQ-A | 65 | | 3 6ECQ5 | BC35B | 65 | | | BC36B | 70 | | | A42AQ-A | 64 | | 42BCQ1 | A48AQ-A | 64 | | | BC48A | 79 | | | BC48B | 63 | | | A48AQ-A | 102.5 | | 48ECQ2 | BC48A | 117,5 | | | BC48B | 101.5 | | | BC60B | 119.5 | | | A60AQ-A | 117 | | 60ECQ1 | BC48A | 132 | | | BC60A | 152 | | | BC60B | 134 | The above includes 25° of 1/4° or 3/8° diameter liquid line. For other than 25° and other tube sizes, adjust the total charge according to the following schedule. | <u>Liquid Line Diameter</u> | Oz, R-22 Per Ft. | |-----------------------------|------------------| | 1/4" | . 25 | | 3/8" | .6 | | 1/2" | 1.2 | INSTALLER NOTE: Stamp or mark the final system charge determined above on the outdoor unit serial plate. Examples: 42BCQ1 and A42AQ-A with 35' liquid line 35' - 25' = 10' m .6 = 6 oz. 64 + 6 = 70 oz. Total 42BCQ1 and A42AQ-A with 18' liquid line $25' - 18' = 7' \times .6 = 4.2 \text{ oz}.$ 64 - 4 = 60 oz. Total NOTE: Round all decimals to nearest whole number. ### IV. SERVICE ### SERVICE HINTS - 1. Caution homeowner to maintain clean air filters at all times. Also, not to needlessly close off supply and return air registers. This reduces air flow through the system, which shortens equipment service life as well as increasing operating costs. - 2. Check all power fuses or circuit breakers to be sure that they are the correct rating. - 3. Periodic cleaning of the outdoor coil to permit full and unrestricted air flow circulation is essential. ### FAN BLADE SETTING DIMENSIONS Shown in the drawing below are the correct fan blade setting dimensions for proper air delivery across the outdoor coil. Any service work requiring removal or adjustment in the fan and/or motor area will require that the dimensions below be checked and blade adjusted in or out on the motor shaft accordingly. FIGURE 6 | Model | Dimension A | |-------|-------------| | Al1 | 1/2 | 18BCQ4--Outdoor Model TABLE 14 | COOLING | | | | Air T | enperat | ure_Ent | ering O | utdoor (| Coil De | gree F | | |-----------------|---------------------------|-----------|-----|-------|---------|---------|---------|----------|----------|----------|----------| | Indoor
Model | Return Air
Temperature | Pressure | 75 | 80 | o
85 | 90 | o
95 |
0
100 | 0
105 | 0
110 | 0
115 | | | 75 deg. DB | Low Side | 76 | 77 | 79 | 81 | 82 | 83 | 85 | 86 | 87 | | | 62 deg. WB | High Side | 208 | 222 | 237 | 252 | 267 | 283 | 299 | 316 | 333 | | BC24B | 80 deg. DB | Low Side | 82 | 83 | 85 | 87 | 88 | 89 | 91 | 92 | 93 | | | 67 deg. WB | High Side | 214 | 228 | 243 | 258 | 274 | 290 | 307 | 324 | 342 | | | 85 deg. DB | Low Side | 87 | 89 | 91 | 93 | 95 | 96 | 98 | 98 | 99 | | | 72 deg. WB | High Side | 221 | 236 | 251 | 267 | 283 | 300 | 317 | 335 | 354 | 24ECQ5--Outdoor Model TABLE 15 | COLING | ·········· | Air To | emperati | <u>ure Ent</u> | ering O | utdoor (| <u>Coil De</u> | gree F | | | | |---------|-------------|-----------|----------|----------------|---------|----------|----------------|--------|-----|-----|-----| | |] | | 0 | 0 | 0 | 0 |] 0 | 0 | 0 | 0 | 0 | | Indoor | Return Air | | 75 | 80 | 85 | 90 | 95 | 100 | 105 | 110 | 115 | | Model | Temperature | Pressure | | l . | 1 | | | | | | | | | 75 deg. DB | Low Side | 72 | 74 | 75 | 76 | 77 | 78 | 79 | 81 | 82 | | A36AQ-A | 62 deg. WB | High Side | 189 | 210 | 230 | 249 | 268 | 286 | 303 | 319 | 334 | | | 80 deg. DB | Low Side | 77 | 78 | 80 | 82 | 83 | 84 | 86 | 87 | 88 | | BC24B | 67 deg. WB | High Side | 194 | 216 | 236 | 256 | 275 | 293 | 311 | 327 | 343 | | | 85 deg. DB | Low Side | 83 | 84 | 86 | 87 | 89 | 91 | 92 | 94 | 95 | | | 72 deg. WB | High Side | 202 | 224 | 244 | 265 | 284 | 303 | 321 | 338 | 355 | 30ECQ5--Outdoor Model TABLE 16 | COOLING Air Temperature Entering Outdoor Coil Degree F | | | | | | | | | | | | |--|-------------|-----------|-----|------|-------------|----------|-----|-----|-------------|-----|-----| | į | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Indoor | Return Air | | 75 | 80 | 85 | 90 | 95 | 100 | 105 | 110 | 115 | | Model | Temperature | Pressure | | | | <u> </u> | | | | | | | | 75 deg. DB | Low Side | 67 | 69 | 70 | 71 | 72 | 73 | 74 | 76 | 77 | | | 62 deg. WB | High Side | 190 | 206 | 222 | 238 | 254 | 270 | 287 | 304 | 321 | | BC30B | 80 deg. DB | Low Side | 72 | 73 | 75 | 77 | 78 | 79 | 81 | 82 | 83 | | | 67 deg. WB | High Side | 195 | 212 | 228 | 244 | 261 | 278 | 295 | 312 | 330 | | | 85 deg. DB | Low Side | 76 | 78 | 80 | 82 | 84 | 86 | 87 | 88 | 89 | | Í | 72 deg. WB | High Side | 203 | 219 | 236 | 253 | 270 | 287 | 305 | 323 | 341 | | | 75 deg. DB | Low Side | 67 | 69 | 71 | 73 | 75 | 76 | 78 | 78 | 79 | | | 62 deg. WB | High Side | 196 | 210 | 22 5 | 240 | 256 | 272 | 289 | 306 | 324 | | A30AQ-A | 80 deg. DB | Low Side | 72 | 74 | 76 | 78 | 80 | 82 | 83 | 84 | 85 | | | 67 deg. WB | High Side | 201 | 216 | 231 | 247 | 263 | 280 | 297 | 315 | 333 | | BC35B | 85 deg. DB | Low Side | 76 | 79 | 82 | 84 | 86 | 88 | 89 | 90 | 91 | | 1 . | 72 deg, WB | High Side | 209 | 224 | 239 | 255 | 272 | 289 | 307 | 325 | 344 | | | 75 deg. DB | Low Side | 69 | 71 | 73 | 75 | 77 | 79 | 80 | 81 | 82 | | 1 | 62 deg. WB | High Side | 191 | 205 | 220 | 235 | 251 | 268 | 285 | 303 | 322 | | BC36B | 80 deg. DB | Low Side | 74 | 76 | 78 | 80 | 82 | 84 | 85 | 87 | 88 | | | 67 deg. WB | High Side | 195 | 210_ | 225 | 241 | 258 | 275 | 2 93 | 312 | 331 | | | 85 deg. DB | Low Side | 80 | 82 | 84 | 86 | 88 | 90 | 91 | 93 | 94 | | | 72 deg. WB | High Side | 201 | 217 | 233 | 250 | 267 | 285 | 303 | 322 | 342 | Low side pressure + 2 PSIG (suction line @ outdoor unit quick connect) High side pressure ± 5 PSIG (liquid line @ outdoor unit quick connect) Tables are based upon rated CFM (airflow) across the evaporator coil and should be found under section titled "Refrigerant Charge" elsewhere in manual. If there is any doubt as to correct operating charge being in the system, the charge should be removed, system evacuated, and recharged to serial plate instructions. 368CO5--Outdoor Model TABLE 17 COOLING Air Temperature Entering Outdoor Coil Degree F Indoor Return Air Model Temperature Pressure 75 deg. DB Low Side 62 deg. WB High Side A36AQ-A 80 deg. DB Low Side 67 deg. WB High Side BC35B 85 deg. DB Low Side 72 deg. WB High Side 75 deg. DB Low Side 62 deg. WB High Side BC36B 80 deg. DB Low Side 67 deg. WB High Side 85 deg. DB Low Side 72 deg. WB High Side 42ECQ1--Outdoor Model TABLE 18 | COOLING | | | Air Te | enperati | ire Ente | ering Ot | itdoor (| Coil Dec | ree F | | | |-----------|-------------|------------|--------|----------|----------|----------|----------|----------|-------|-----|-----| | | | | 0 | 0 | 0 | 0 | o | 0 | 0 | 0 | 0 | | Indoor | Return Air | | 75 | 80 | 85 | 90 | 95 | 100 | 105 | 110 | 115 | | Model | Temperature | Pressure | | | | | | | | | | | } | 75 deg. DB | Low Side | 72 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 82 | | | 62 deg. WB | High Side | 188 | 201 | 215 | 229 | 243 | 257 | 271 | 285 | 298 | | BC48A | 80 deg. DB | Low Side | 77 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 87 | | | 67 deg. WB | High Side_ | 192 | 206 | 221 | 235 | 250 | 265 | 279 | 294 | 308 | | ļ | 85 deg. DB | Low Side | 83 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 93 | | | 72 deg. WB | High Side | 197 | 213 | 228 | 244 | 259 | 274 | 290 | 305 | 321 | | | 75 deg. DB | Low Side | 64 | 65 | 67 | 68 | 70 | 72 | 73 | 75 | 76 | | | 62 deg. WB | High Side | 183 | 199 | 214 | 230 | 245 | 260 | 276 | 291 | 307 | | A42AQ-A | 80 deg. DB | Low Side | 67 | 69 | 71 | 73 | 75 | 77 | 79 | 81 | 83 | | | 67 deg. WB | Righ Side | 189 | 205 | 220 | 236 | 251 | 266 | 282 | 297 | 313 | | | 85 deg. DB | Low Side | 72 | 74 | 76 | 79 | 81 | 83 | 86 | 88 | 90 | | <u>L.</u> | 72 deg. WB | High Side | 195 | 212 | 228 | 244 | 260 | 276 | 292 | 308 | 325 | | | 75 deg. DB | Low Side | 65 | 67 | 69 | 71 | 73 | 75 | 77 | 79 | 81 | | [| 62 deg. WB_ | High Side | 191 | 207 | 222 | _238 | 254 | 270 | 286 | 301 | 317 | | A48AQ-A | 80 deg. DB | Low Side | 70 | 72 | 74 | 76 | 78 | 80 | 82 | 84 | 86 | | | 67 deg. WB | High Side | 196 | 213 | 229 | 245 | 261 | 277 | 293 | 309 | 326 | | BC 48B | 85 deg. DB | Low Side | 75 | 77 | 79 | 82 | 84 | 86 | 89 | 91 | 93 | | L | 72 deg. WB | High Side | 204 | 220 | 237 | 253 | 270 | 287 | 303 | 320 | 336 | Low side pressure \pm 2 PSIG (suction line @ outdoor unit quick connect) Righ side pressure \pm 5 PSIG (liquid line @ outdoor unit quick connect) Tables are based upon rated CFM (airflow) across the evaporator coil and should be found under section titled "Refrigerant Charge" elsewhere in manual. If there is any doubt as to correct operating charge being in the system, the charge should be removed, system evacuated, and recharged to serial plate instructions. 48BCQ2--Outdoor Model COOLING TABLE 19 Air_Temperature Entering Outdoor Coil Degree F | | | | | | | | 21 1119 O | | 2011 00 | , | | |---------|-------------|------------|-----|-----|-----|-----|-----------|-----|---------|-----|-----| | | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Indoor | Return Air | | 75 | 80 | 85 | 90 | 95 | 100 | 105 | 110 | 115 | | Model | Temperature | Pressure | | | | | | | | | | | | 75 deg. DB | Low Side | 69 | 70 | 72 | 73 | 75 | 77 | 78 | 80 | 81 | | | 62 deg. MB | High Side | 206 | 220 | 235 | 249 | 263 | 277 | 291 | 306 | 320 | | BC48A | 80 deg. DB | Low Side | 74 | 75 | 77 | 78 | 80 | 82 | 83 | 85 | 86 | | | 67 deg. WB | High Side | 212 | 226 | 241 | 255 | 270 | 285 | 299 | 314 | 328 | | | 85 deg. DB | Low Side | 80 | 81 | 83 | 84 | 86 | 88 | 89 | 91 | 92 | | | 72 deg. WB | H. jh Side | 219 | 234 | 249 | 264 | 279 | 294 | 309 | 324 | 339 | | | 75 deg. DB | Low Side | 66 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 76 | | | 62 deg. WB | High Side | 188 | 204 | 221 | 237 | 254 | 271 | 287 | 304 | 320 | | A48AQ-A | 80 deg. DB | Low Side | 71 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 81 | | | 67 deg. WB | High Side | 194 | 210 | 227 | 243 | 260 | 277 | 293 | 310 | 326 | | BC48B | 85 deg. DB | Low Side | 76 | 77 | 79 | 80 | 82 | 84 | 85 | 87 | 88 | | | 72 deg. WB | High Side | 201 | 218 | 235 | 252 | 269 | 286 | 303 | 320 | 337 | 60BCQ1--Outdoor Model TABLE 20 | | | | Air Te | emperati | ire Ente | ering On | itdoor (| Coil Dec | ree F | | |-------------|--|---|------------
---|---|---|--
--|--|--| | | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Return Air | | 75 | 80 | 85 | 90 | 95 | 100 | 105 | 110 | 115 | | Temperature | Pressure | | | | | | | | | | | 75 deg. DB | Low Side | 60 | 62 | 64 | 67 | 69 | 71 | 74 | 76 | 78 | | 62 deg. WB | High Side | 190 | 206 | 221 | 237 | 253 | 269 | 285 | 300 | 316 | | 80 deg. DB | Low Side | 65 | 67 | 69 | 72 | 74 | 76 | 79 | 81 | 83 | | 67 deg. WB | High Side | 194 | 211 | 227 | 243 | 259 | 275 | 291 | 307 | 324 | | 85 deg. DB | Low Side | 69 | 72 | 75 | 77 | 80 | 83 | 85 | 88 | 91 | | 72 deg. WB | High Side | 202 | 218 | 235 | 251 | 268 | 285 | 301 | 318 | 334 | | 75 deg. DB | Low Side | 69 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 79 | | 62 deg. WB | High Side | 203 | 218 | 233 | 248 | 263 | 278 | 293 | 308 | 323 | | 80 deg. DB | Low Side | 74 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 84 | | 67 deg. WB | High Side | 209 | 224 | 239 | 25 4 | 269 | 284 | 299 | 314 | 329 | | 85 deg. DB | Low Side | 80 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 90 | | 72 deg. WB | High Side | 216 | 232 | 247 | 263 | 278 | 293 | 309 | 324 | 340 | | 75 deg. DB | Low Side | 63 | 6 5 | 67 | 69 | 71 | 73 | 75 | 77 | 79 | | 1 ' | High Side | 188 | 202 | 217 | 231 | 246 | 261 | 275 | 290 | 304 | | 80 deg. DB | Low Side | 68 | 70 | 72 | 74 | 76 | 78 | 80 | 82 | 84 | | 1 - 1 | | | 207 | 222 | 237 | 252 | 267 | 282 | 297 | 312 | | | | 73 | 75 | 77 | 80 | 82 | 84 | 87 | 89 | 91 | | 1 - 1 | | 1 | | 229 | 245 | l . | 277 | 293 | 308 | 324 | | | Temperature 75 deg. DB 62 deg. WB 80 deg. DB 67 deg. WB 85 deg. DB 72 deg. WB 75 deg. DB 62 deg. WB 80 deg. DB 62 deg. WB 85 deg. DB 67 deg. WB 85 deg. DB 67 deg. WB 85 deg. DB | Temperature Pressure 75 deg. DB Low Side 62 deg. WB High Side 80 deg. DB Low Side 67 deg. WB High Side 85 deg. DB Low Side 72 deg. WB High Side 75 deg. DB Low Side 62 deg. WB High Side 80 deg. DB Low Side 67 deg. WB High Side 85 deg. DB Low Side 67 deg. WB High Side 72 deg. WB High Side 72 deg. WB High Side 75 deg. DB Low Side 62 deg. WB High Side 80 deg. DB Low Side 62 deg. WB High Side 80 deg. DB Low Side 62 deg. WB High Side 80 deg. DB Low Side 80 deg. DB Low Side 80 deg. DB Low Side | Return Air | Return Air Temperature Pressure 75 deg. DB Low Side 60 62 deg. WB High Side 190 206 deg. WB High Side 194 211 deg. WB High Side 69 72 deg. WB High Side 202 218 deg. DB Low Side 69 71 deg. WB High Side 203 218 deg. DB Low Side 69 71 deg. WB High Side 203 218 deg. DB Low Side 74 76 deg. WB High Side 209 224 deg. WB High Side 209 224 deg. WB High Side 216 232 deg. WB High Side 216 232 deg. WB High Side 63 65 deg. DB Low Side 63 65 deg. DB Low Side 63 65 deg. DB Low Side 68 70 deg. WB High Side 192 207 deg. WB Low Side 73 75 deg. DB 74 75 75 75 75 75 75 75 | Return Air O 75 O 80 O 85 Temperature Pressure 75 80 85 75 deg. DB Low Side 60 62 64 62 deg. WB High Side 190 206 221 80 deg. DB Low Side 65 67 69 67 deg. WB High Side 194 211 227 85 deg. DB Low Side 69 72 75 72 deg. WB High Side 202 218 235 75 deg. DB Low Side 69 71 72 62 deg. WB High Side 203 218 233 80 deg. DB Low Side 74 76 77 67 deg. WB High Side 209 224 239 85 deg. DB Low Side 80 82 83 72 deg. WB High Side 216 232 247 75 deg. DB Low Side 63 65 67 62 deg. WB | Return Air Pressure 0 0 0 0 0 0 90 75 deg. DB Low Side 60 62 64 67 62 64 67 62 64 67 62 64 67 62 64 67 62 64 67 62 64 67 62 64 67 62 64 67 62 64 67 62 62 64 67 62 62 64 67 62 62 62 64 67 62 62 62 64 67 62 62 62 62 64 67 62 63 72 73 72 73 72 73 72 74 73 73 74 74 74 74 74 74 76 77 78 67 69 224 239 254 85 69 82 83 84 72 69 <td< td=""><td>Return Air Pressure 0 0 0 0 90 95 75 deg. DB Low Side 60 62 64 67 69 62 deg. WB High Side 190 206 221 237 253 80 deg. DB Low Side 65 67 69 72 74 67 deg. WB High Side 194 211 227 243 259 85 deg. DB Low Side 69 72 75 77 80 72 deg. WB High Side 202 218 235 251 268 75 deg. DB Low Side 69 71 72 73 74 62 deg. WB High Side 203 218 233 248 263 80 deg. DB Low Side 74 76 77 78 79 67 deg. WB High Side 209 224 239 254 269 85 deg. DB Low Side 63</td><td>Return Air Pressure 0 0 0 0 0 0 95 100 75 deg. DB Low Side 60 62 64 67 69 71 62 deg. WB High Side 190 206 221 237 253 269 80 deg. DB Low Side 65 67 69 72 74 76 67 deg. WB High Side 194 211 227 243 259 275 85 deg. DB Low Side 69 72 75 77 80 83 72 deg. WB High Side 202 218 235 251 268 285 75 deg. DB Low Side 69 71 72 73 74 75 62 deg. WB High Side 203 218 233 248 263 278 80 deg. DB Low Side 74 76 77 78 79 80 67 deg. WB Hi</td><td>Return Air Temperature Pressure 0 0 0 0 0 0 0 0 0 0 0 0 0 100 105 Temperature Pressure 80 85 90 95 100 105 75 deg. DB Low Side 60 62 64 67 69 71 74 62 deg. WB High Side 190 206 221 237 253 269 285 80 deg. DB Low Side 65 67 69 72 74 76 79 67 deg. WB High Side 194 211 227 243 259 275 291 85 deg. DB Low Side 69 72 75 77 80 83 85 72 deg. WB High Side 202 218 235 251 268 285 301 75 deg. DB Low Side 69 71 72 73</td><td>Return Air Temperature Pressure 75 80 85 90 95 100 105 110 75 deg. DB Low Side 60 62 64 67 69 71 74 76 62 deg. WB High Side 190 206 221 237 253 269 285 300 80 deg. DB Low Side 65 67 69 72 74 76 79 81 67 deg. WB High Side 194 211 227 243 259 275 291 307 85 deg. DB Low Side 69 72 75 77 80 83 85 88 72 deg. WB High Side 202 218 235 251 268 285 301 318 75 deg. DB Low Side 69 71 72 73 74 75 76 77 62 deg. WB High Side 203 218 233 <td< td=""></td<></td></td<> | Return Air Pressure 0 0 0 0 90 95 75 deg. DB Low Side 60 62 64 67 69 62 deg. WB High Side 190 206 221 237 253 80 deg. DB Low Side 65 67 69 72 74 67 deg. WB High Side 194 211 227 243 259 85 deg. DB Low Side 69 72 75 77 80 72 deg. WB High Side 202 218 235 251 268 75 deg. DB Low Side 69 71 72 73 74 62 deg. WB High Side 203 218 233 248 263 80 deg. DB Low Side 74 76 77 78 79 67 deg. WB High Side 209 224 239 254 269 85 deg. DB Low Side 63 | Return Air Pressure 0 0 0 0 0 0 95 100 75 deg. DB Low Side 60 62 64 67 69 71 62 deg. WB High Side 190 206 221 237 253 269 80 deg. DB Low Side 65 67 69 72 74 76 67 deg. WB High Side 194 211 227 243 259 275 85 deg. DB Low Side 69 72 75 77 80 83 72 deg. WB High Side 202 218 235 251 268 285 75 deg. DB Low Side 69 71 72 73 74 75 62 deg. WB High Side 203 218 233 248 263 278 80 deg. DB Low Side 74 76 77 78 79 80 67 deg. WB Hi | Return Air Temperature Pressure 0 0 0 0 0 0 0 0 0 0 0 0 0 100 105 Temperature Pressure 80 85 90 95 100 105 75 deg. DB Low Side 60 62 64 67 69 71 74 62 deg. WB High Side 190 206 221 237 253 269 285 80 deg. DB Low Side 65 67 69 72 74 76 79 67 deg. WB High Side 194 211 227 243 259 275 291 85 deg. DB Low Side 69 72 75 77 80 83 85 72 deg. WB High Side 202 218 235 251 268 285 301 75 deg. DB Low Side 69 71 72 73 | Return Air Temperature Pressure 75 80 85 90 95 100 105 110 75 deg. DB Low
Side 60 62 64 67 69 71 74 76 62 deg. WB High Side 190 206 221 237 253 269 285 300 80 deg. DB Low Side 65 67 69 72 74 76 79 81 67 deg. WB High Side 194 211 227 243 259 275 291 307 85 deg. DB Low Side 69 72 75 77 80 83 85 88 72 deg. WB High Side 202 218 235 251 268 285 301 318 75 deg. DB Low Side 69 71 72 73 74 75 76 77 62 deg. WB High Side 203 218 233 <td< td=""></td<> | Low side pressure ± 2 PSIG (suction line @ outdoor unit quick connect) High side pressure ± 5 PSIG (liquid line @ outdoor unit quick comment) Tables are based upon rated CFM (airflow) across the evaporator coil and should be found under section titled "Refrigerant" Charge" elsewhere in manual. If $t_{\rm min}$ is any doubt as to correct operating charge being in the system, the charge should be removed, system evacuated, and recharged to serial plate instructions. | - | | |---|---| | | | | | | | | | | | _ | | | ~ | | | | | • | ~ |