INSTALLATION INSTRUCTIONS

MODELS:

HI-BOY	LO-BOY	COUNTERELOW
H60D36B	IL85D42A	IC60D36A
H85D48B	IL115D48A	IC85D42A
H115D48B	IL145D60A	IC115D48A

HIGH ECONOMY GAS FURNACES

I. Application 1
II. High Altitude Application 1
III. Transportation Damage 1
IV. Locating the Furnace 1
V. Duct Work 3
VI. Combustion and Ventilation Air 3
VII. Gas Supply and Piping 5

1. General Recormendations 5
2. Checking the Gas Piping 6
3. Determining Gas Input--Natural Gas 6
4. Determining Gas Input--LP Gas 7
5. Gas Pressure Specifications 7
6. Orifice Sizing 7
VIII. Wiring 8
7. Electrical Power Supply 8
8. Electrical Grounding 8
A. Recommended Grounding Method 8
B. Alternate Grounding Method 9
9. Field Installed Equipment 9
IX. Venting Applications 10
10. Marginal Existing Vent Systems 10
A. Undersized Vents 10
B. Oversized Vents 10
C. Other Factors Resulting in Condensation 10
D. Presale Inspection 10
11. Vent Inspection Check List 10
12. Suggested Vent Remedies 11
13. Vent Resizing Instructions 12
14. Venting Troubleshooting Procedures 13
15. Vertical Venting Instructions 14
A. General Instructions 14
16. Sidewall Venting Instructions 17
A. Approved Sidewall Vent Components 17
B. Approved Sealants 17
C. General Instructions 17
D. Location of Vent Terminal 18
E. Assembly of Vent 20
F. Vent Passage Through A Combustible Wall 20
X. Thermostat 21
XI. Blower Operation 21
17. Blower Speed Adjustment 21
XII. Filters 22
18. Filter Locations--Removal and Replacement Procedures-- 22
Hi-Boy Models
19. Alternate Bottom Filter Location 24
20. Filter Locations--Counterflow Models 25
21. Filter Locations--Lo-Boy Models 26
XIII. Sequence of Operation 26
XIV. Maintenance Instructions 27
XV. Replacement Parts 27
XVI. Service Agency Procedures 27
XVII. Wiring Diagrams 29
XVIII. S86 Intermittent Pilot System Troubleshooting 32
XIX. Common Venting Requirements 33

FIGURES AND TABLES

Figure 1 4 4
Figure 2
Figure 2
Figure 3 5
Figure 4 6
Figure 5 16
Figure 6 16
Figure 7 16
Figure 8 16
Figure 9 18
Figure 10 19
Figure 11 20
Figure 12 20
Figure 13 23
Figure 14 23
Figure 15 24
Figure 16 25
Figure 17 25
Figure 18 26
Figure 19 26
Figure 20 28
Figure 21 28
Figure 22 28
Figure 23 35
Figure 24 35
Figure 25 35
Figure 26 35
Figure 27 36
Figure 28 36
Table 1 2
Table 2 6
Table 3 6
Table 4 7
Table 4A 8
Table 4B 8
Table 5 8
Table 6 13
Table 7 17
Table 8 22
Table 9 33
Table 10 33
Table 11 33

I. APPLICATION

This is a forced air gas furnace for indoor installation in building constructed on site. The furnace installation must conforn with local building codes and ordinances or, in their absence with the National Fuel Gas Code, ANSI Z223.1-1atest edition, and the National Electrical Code ANSI/NFPA 70-1atest edition. It is the personal responsibility and obligation of the purchaser to contract a qualified installer to assure that installation is adequate and is in conformance with governing codes and ordinances.

II. HIGH ALTITUDE APPLICATIONS

Ratings of gas utilization equipnent are based on sea level operation and need not be changed for operation at elevations up to 2,000 feet. For operation at elevations above 2,000 feet and, in the absence of specific recomendations from the local authority having jurisdiction, equipment ratings shall be reduced at the rate of 4 percent for each 1,000 feet above sea level before selecting appropriately sized equipment. (Ref. ANSI Z223.1-latest edition, Par. 8.12). See Table 4A.

III. TRANSPORTATION DAMAGE

All units are packed securely in shipping container. All units should be carefully inspected upon arrival for danage. In the event of danage, the consignee should:

1. Note on delivery receipt of any danage to container.
2. Notify carrier pronptly, and request an inspection.
3. In case of concealed danage, the carrier must be notified as soon as possible within 15 days after delivery.
4. Clains for any danage, apparent or concealed, should be filed with the carrier, using the following supporting docunents:
A. Original Bill of Lading, certified copy, or indennity bond.
B. Original paid freight bill of indennity in lieu thereof.
C. Original invoice or certified copy thereof showing trade and other discounts or deductions.
D. Copy of the inspection report issued by carrier's representative at the tine damage is reported to carrier.

The carrier is responsible for naking pronpt inspection of damage and for a thorough investigation of each clain.

IV. LOCATING THE FURNACE

When selecting a location for the furnace, observe the following points:

1. The furnace should be set on a level floor. If the floor nay become danp or wet at times, the furnace should be supported above the floor using a concrete base, bricks, patio blocks, etc., making sure adequate support is available for the furnace. Counterflow furnaces require use of combustible floor base if installed on conbustible surface. The conbustible floor base is not part of the furnace and must be ordered separately. Furnaces approved for installation on combustible flooring shall not be installed directly on carpeting, tile or other conbustible naterial other than wood flooring.
2. The furnace should be as centralized as practical with respect to the air distribution systen.
3. Provisions nust be nade for venting combustion products outdoors through an individual venting system.
4. Provide at least the mininum clearances specified in Table 1 for fire protection, proper operation and service access. These clearances must be pernanently naintained. The conbustion and ventilating air openings in front of the furnace nust never be obstructed.
5. Hinimun service clearances nust take precedence over fire protection clearances (minimum installation clearances).
6. All models are approved for a utility roon or closet installation.
7. A gas-fired furnace installed in a residential garage must be installed so that the burners and ignition source are located not less than 18 inches above the floor, and the furnace nust be located or protected to avoid physical danage by vehicles.

TABLE 1
MINIMUM CLEARANCES (INCHES)

Minimun Installation Clearances								Mininun Service Clearance		
Hodel	Top	Pront	Vent	Back	Left Side	Right Side	Floor	Front	Sides	Back
$\begin{aligned} & \text { IL85D42A } \\ & \text { Lo-Boy } \\ & \hline \end{aligned}$	1	6	${ }^{*}{ }^{*}$	0	0	$1+$	C	24	18 (1)	$\frac{24}{}$
$\begin{aligned} & \text { IL115048A } \\ & \text { Lo-Boy } \end{aligned}$	1	6	6* \triangle	0	0	0	C	24	18 (1)	24
$\begin{aligned} & \text { IL145060 } \\ & \text { Lo-Boy } \\ & \hline \end{aligned}$	1	6	6* \triangle	0	0	0	C	24	18 (1)	24
$\begin{aligned} & \text { IB60036B } \\ & \text { Hi-Boy } \end{aligned}$	1	6	6* Δ	0	0	$4+$	C	24	0	0
$\begin{aligned} & \text { IB85D48B } \\ & \text { Hi-Boy } \\ & \hline \end{aligned}$	1	6	6* Δ	0	0	$1+$	C	24	0	0
$\begin{aligned} & \text { IH115D48B } \\ & \text { Hi-BOy } \\ & \hline \end{aligned}$	1	6	6* \triangle	0	0	0	C	24	0	0
IC60036A Counterfiow	1	6	6* Δ	0	0	$4+$	NC	24	0	0
IC85D42A Counterfiou	1	6	6* ${ }^{\text {a }}$	0	0	1+	M	24	0	0
IC115048A Counterflow	1	6	6* Δ	0	0	0	NC	24	0	0

(1) Minimun clearance at least one side for access to rear of furnace.

* Clearance nay be 1 inch when Type B-1 vent is used.
+ Clearance nay be 0 inch when Type B-1 vent is used.
Δ Clearance nay be $2^{\prime \prime}$ when approved side wall vent material is used.
C Ploor nay be conbustible naterial.
IC Floor must be non-conbustible. Can be installed on conbustible flooring only when installed on special base available fron factory.

v. DUCT WORK

The air distribution systen should be designed and installed in conformance with Manuals 7 or 7A published by Air Conditioning Contractors of Anerica (ACCA), as set forth in their Manual K .

CAUTION

When a furnace is installed so that supply ducts carry air circulated by the furnace to areas outside the space containing the furnace, the return air aust also be handled by a duct(s) sealed to the furnace casing and terminating outside the space containing the furnace. This is to prevent drawing possible hazardous combustion products into the circulated air.

When the furnace is used in connection with a cooling unit*, the furnace shall be installed parallel with or on the upstrean side of the cooling unit to avoid condensation in the heating element. With a parallel flow arrangenent, the danpers or other neans used to control flow of air shall be adequate to prevent chilled air fron entering the furnace, and if nanually operated, nust be equipped with means to prevent operation of either unit, unless the damper is in the full heat or cool position.
*A cooling unit is an air conditioning coil, heat pump coil or chilled water coil.

VI. COMBUSTION AND VENTILATION AIR

The furnace and furnace roon nust have an adequate supply of air for safe combustion and ventilation. The provisions necessary to assure an adequate air supply will vary depending upon differences in the tightness of house construction and in the location of the furnace. Hethods of providing air from some typical situations are described below. Consult local codes and ordinances for requirenents applicable to your specific furnace installation conditions and conply with then. In the absence of local codes and ordinances, comply with the Mational Ruel Gas Code, ANSI Z223.1-latest edition.

EXANPLB 1--PURNACB LOCATED IN AN UNCONEINED SPACE

A. If the furnace is located in a basenent or other large, open area of a conventionally built house (loose construction), the air that leaks into the building nornally will provide an adequate air supply.

EXANPLB 2--PURNACB LOCATBD IN A CONFINED SPACE

A. When the furnace is in a closet or utility room, install two open grilles in a wall or door opening to the rest of the house. Bach grille nust have a free area of at least one square inch for each 1000 Btuh of total input rating of all gas appliances in the confined space. Refer to Figure 1. The grilles must conmunicate uith other open areas having adequate air infiltration from outdoors.
B. If the building is tightly constructed, not enough outside air nay enter for safe combustion. Install a fresh air duct from a point near the burners to the outside or to a ventilated attic or crawl space. Refer to Figure 2. This duct nust have a free area of at least one square inch for each 4000 Btuh of total input of all gas appliances in the space. The mininum dinension of a rectangular duct must not be less than three inches.

CAUTION

When a furnace is installed in a closet or utility roon, never use this room as a return air plenum.

FIGURE 1

FIGURE 2
FRESH AIR DUCT FOR TIGHTLY SEALED BUILDIMG

VII. GAS SUPPLY AND PIPING

GENERAL RECOMMENDATIONS

1. Be sure the gas line complies with the local codes and ordinances, or in their absence with National Euel Gas Code, ANSI Z223.1-1atest edition.
2. A sedinent trap or drip leg nust be installed in the supply line to the furnace.
3. A ground joint union shall be installed in the gas line adjacent to and upstrean from the gas valve and domstrean fron the nanual shut off valve.
4. An $1 / 8^{\prime \prime}$ N.P.T. plugged tapping accessible for test gauge connection shall be installed immediately upstrean of the gas supply connection to the furnace for the purpose of determining the supply gas pressure.
5. A nanual shut-off valve shall be installed in the supply gas line external to the furnace when required by local code. See Rigure 3.

FIGURE 3

*Gs valve is covered to prevent dirt froe entering. Remeve cover only when ready to connect pliping.
6. Use steel or wrought iron pipe and fittings.
7. DO MOr thread pipe too far. Valve distortion or nalfunction may result from excess pipe within the control. Use pipe joint compound resistant to the action of liquified petroleum gases on male threads only. DO MOf use Teflon tape. See Table 2 and Figure 4.

TABLR 2
LBNGTH OR STANDARD PIPB THRRADS (inches)

Pipe Size	Bffective Length of Thread	Overall Length of Thread
$3 / 8$	$3 / 8$	$9 / 16$
$1 / 2$	$1 / 2$	$3 / 4$
$3 / 4$	$1 / 2-9 / 16$	$13 / 16$
1	$9 / 16$	1

8. Refer to Table 3 for Gas Pipe Sizes for natural gas. If nore than one appliance is supplied from a single line size, capacity nust equal or exceed the combined input to all appliances, and the branch lines feeding the individual appliances properly sized for each input.

TABLE 3
GAS PIPE SIZES--NATURAL GAS

Length of Pipe, Et.	Pipe Capacity--Btu Per Hour Input Pipe Size				
	$1 / 2^{\prime \prime}$	$3 / 4^{\prime \prime}$	$1^{\prime \prime}$	$1-1 / 4^{\prime \prime}$	
	132,000	278,000	520,000	$1,050,000$	
20	92,000	190,000	350,000	730,000	
30	73,000	152,000	285,000	590,000	
40	63,000	130,000	245,000	500,000	
50	56,000	115,000	215,000	440,000	
60	50,000	105,000	195,000	400,000	
70	46,000	96,000	180,000	370,000	
80	43,000	90,000	170,000	350,000	
100	38,000	79,000	150,000	305,000	

CHECKING THE GAS PIPING

Before turning gas under pressure into piping, all openings from which gas can escape should be closed. Innediately after turning on gas, the systen should be checked for leaks. This can be done by watching the $1 / 2$ cubic foot test dial and allowing 5 minutes to show any novement, and by soaping each pipe connection and watching for bubbles. If a leak is found, nake the necessary repairs imnediately and repeat the above test. The furnace nust be isolated fron the gas supply piping system by closing the nanual shutfoff valve on the conbination gas control valve during pressure testing of the gas supply piping systen at pressures up to $1 / 2$ psig. The furnace nust be disconnected fron supply piping and supply piping capped during any pressure testing of supply piping systen at test pressures in excess of $1 / 2 \mathrm{psig}$.

Defective pipes or fittings should be replaced and not repaired. Never use a flame or fire in any form to locate gas leaks, use a soap solution.

After the piping and meter have been checked conpletely, purge the system of air. DO NOT bleed the air inside the furnace. Be sure to check and relight all the gas pilots on other appliances that may have been extinquished because of interrupted gas supply.

DETERMINING GAS INPUT--NATURAL GAS
The following is a procedure in which to neasure gas input:

1. Turn off all gas appliances other than the furnace.
2. Pron local gas supplier, obtain the average heating value in BTU/CU FT of gas supplied to the installation site.
3. Light furnace following the lighting and operating instructions label.
4. With a stop watch, neasure the amount of tine, in seconds, it takes to consume two (2) cubic feet of gas.
5. Use the following fornula to calculate the gas input of the furnace.

$$
\text { Gas input rating in } \mathrm{BTU} / \mathrm{BR}=\frac{\mathrm{BTU} / \mathrm{CU} \mathrm{FT} \times 7200}{\begin{array}{l}
\text { Time in seconds for two } \\
\text { Cubic feet of gas flow }
\end{array}}
$$

Branple: Assune a tine of 60 seconds for two cubic feet has been determined with a heating value of 1,000 BTU/CU PT.

$$
\begin{aligned}
& \text { Gas input rating }=\frac{1000 \times 7200}{60} \\
& \text { Gas input rating }=120,000 \mathrm{BTV} / \mathrm{RR}
\end{aligned}
$$

6. If the input rate is not within two percent of the rated input, it say be achieved by adjusting the nanifold pressure. If the specified input cannot be obtained, the furnace must be reorificed.

CAUTION: Por operation at elevations above 2,000, the installer must comply with the "High Altitude Applications" section on Page 1.

DETERMINING GAS INPUT--LP GAS

The pressure regulator on the storage tank must be adjusted to maintain a nanifold pressure of $10.0^{\prime \prime}$ W.C. on the exit side of the furnace gas valve. This pressure will result in correct input when the burners are orificed properly.

GAS PRESSURE SPECIFICATIONS

This furnace is equipped vith fixed orifices for rated input with the following gas pressures:

TABLE 4				
	Supply			
	Mininum	Maximun	Manifold	
Natural 21,000 BTU/CU FT	$4.5^{\prime \prime} \mathrm{HC}$	$11.0^{\prime \prime} \mathrm{HC}$	$3.5^{\prime \prime} \mathrm{WC}$	
LP	2,550	BTU/CF FT	$11.0^{\prime \prime} \mathrm{HC}$	$13.0^{\prime \prime} \mathrm{HC}$

The supply pressure nay be measured by attaching a water column gauge to a pressure tap adjacent to and up strean fron the gas valve. The manifold pressure nay be neasured by removing the small pipe plug located in the top of the nain burner nanifold, and inserting a pressure tap. Attach water colunn gauge to tap and ignite main burner. Snall variations in the gas pressure nay be made, not to exceed $\pm 0.1^{\prime \prime}$ W.C., to achieve rated nanifold pressure. This nay be achieved by turning the gas valve regulator adjusting screw clockwise to increase pressure or counter-clockwise to decrease pressure. Major changes in flow rate must be made by changing the size of the nain burner orifices.

ORIFICE SIZING

All high econony gas furnaces are shipped with fixed gas orifices for use with natural gas. These standard orifices are sized for elevations below 2,000 feet above sea level. For installations above 2,000 feet, refer to the "High Altitude Applications" section on Page 1 of this manual for resizing procedure and Table 48 for orifice drill size and decinal equivalents.

Standard orifice size for elevations below 2,000 feet for natural gas for all high econony furnaces is a No. 38 (.1015") drill. For use with LP gas when installed in elevations below 2,000 feet, a No. 53 (.0595") drill is to be used. MOTB: For LP gas capability, the burner nust be converted to LP gas by neans of an LP conversion kit that is sold separately.

TABLE 4A
EQUIVALENT ORIEICB SIZES AT BIGB ALTITUDE
(IMCLUDES 4\% INPUT REDUCTION FOR EACH 1,000 EEET)

Model	Gas Type	Orifice Size At Sea Level	Orifice Size Required At Other Elevations								
All Bigh-Bconony			2000	3000	4000	5000	6000	7000	8000	9000	10,000
Gas Furnaces	Nat	38	39	40	41	41	42	42	43	43	44
	LP	53	54	54	54	54	54	54	55	55	55

TABLE 4B
ORIFICE DRILL SIZB DECIMAL EQUIVALENTS

Drill Ho.	31	32	33	34	35	36	37	38	39	40	41	42	43
Decinal	.120	.116	.113	.111	.110	.1065	.104	.1015	.0995	.098	.096	.0935	.089
Drill Ho.	44	45	46	47	48	49	50	51	52	53	54	55	56
Decinal	.086	.082	.081	.0785	.076	.073	.070	.067	.0635	.0595	.055	.052	.0465

VIII. WIRING

CAUTION
Eor your personal safety, turn off any electrical connections.

All electrical work must conforn with local codes and ordinances or, in their absence, with the National Blectrical Code, ANSI/NEPA 70-1atest edition.

ELECTRICAL PONER SUPPLY

Run a separate 120 volt, AC circuit fron a separate fuse or circuit breaker in the service entrance panel with an anpacity rating per table 5. Locate a shut off switch at the furnace. Make connections from this suitch to the furnace junction box as shown in the furnace wiring diagram.

Model	Volts/8Z/PH	$\begin{aligned} & \text { Total } \\ & \text { Anps } \\ & \hline \end{aligned}$	Blower Motor		Inducer Motor		Minimun Circuit Ampacity	Maximum Time Delay Fuse or HACR Circuit Breaker
			[PP	ELA	HP	ELA		
IH60D36B IC60036	115/60/1	7.4	1/3	6.5	1/40	. 90	15	15 amp
$\begin{aligned} & \text { IH85D48B } \\ & \text { IC85D42A } \\ & \text { IL85D42A } \end{aligned}$	115/60/1	9.9	$1 / 3$	9.0	$1 / 40$. 90	15	15 amp
IH115D488 ICI15D48A IL115048A	115/60/1	11.4	1/2	10.5	$1 / 40$. 90	15	20 amp
IL14506A	115/60/1	13.4	3/4	12.5	1/40	90	17	25 amp

ELECTRICAL GROUNDING

Recommended Grounding Method

When installed, the furnaces must be electrically grounded in accordance with local codes or in the absence of local codes, with the National Blectrical Code, ANSI/NFPA No. 70-latest edition. Use a \#14 AKC copper wire fron green screw or green ground wire on the furnace to a grounded connection in the service panel or a properly driven and electrically grounded ground rod.

Alternate Ground Method

If the reconnended grounding nethod is inpossible, permanently ground the furnace from the ground connector to a grounded cold water pipe ${ }^{*}$ using a separate, green colored, insulated conductor of appropriate size. THIS, HOWBVER, IS MOT RECOWIENDED.
*Cold water pipe nust have netal continuity to electrical ground and not be interrupted by plastic, rubber or other electrically insulating connectors (including water meter or pump) without adding a jumper wire at these connections.

MOTB: DO MOT ground to a gas supply pipe. DO NOT connect to electric power supply until appliance is pernanently grounded.

FIELD INSTALLED EQUIPMENT

Wiring to be done in the field between the furnace and devices not attached to the furnace, or between separate devices which are field installed and located, shall conform with the temperature limitation for Type T wire (63 degree F rise (36 degree C) \} when installed in accordance with the manufacturer's instructions. Refer to wiring diagrans, pages 28 thru 30.

IX. VENTING APPLICATIONS

MARGINAL EXISTING VENT SYSTEMS (REPLACEMENT FURNACES)

Undersized Vents

The high econony furnaces have a special control circuit in which the pressure switch that proves operation of the conbustion air blower and adequate conbustion air will also respond to an undersized or restricted vent systen and shut down the furnace before the combustion characteristics go "sour" and could potentially be forced out at the burner opening.

Oversized Vents

With an oversized vent or nassive chinney, the flue products are sometimes unable to heat the inside surface of the chinney or vent pipe to a tenperature above the dew point tenperature. This also makes the establishment of a proper draft more difficult during the start-up of a cold furnace.

Other Factors Resulting In Condensation

Several additional factors nay contribute to condensate formation in the vent. The physical mass of the vent is as inportant as size. Outside nasonry chinneys and unlined interior masonry chimneys are unsatisfactory because the flue products do not contain enough heat to warm the massive brick wall of the chimney. Interior chinneys are acceptable only as detailed below under Vent Inspection Check List, Item 3.

Presale Inspection

The following information will describe for distributors, dealers, and installing contractors, a method for identifying an acceptable vent before the furnace is installed.

8xisting vents nust always be inspected before furnace installation. Most replacenent dealers conduct this vent inspection and this practice is heartily endorsed. Vent inspections are doubly inportant when high-efficiency furnaces are installed, because of the reduced heat input to the vent. This inspection should be conducted before the sale of the furnace. Venting conditions should also be addressed before the sale by specifically stating that the quoted price either does or does not include modifications to the vent system. In any case, the inspection nust be conducted before installation. This practice will reduce the possibility of call-backs to correct venting problens, and will increase customer satisfaction.

VENT INSPECTION CHECK LIST

In addition to compliance with the National Euel Gas Code, certain vent system conditions should be avoided to mininize the possibility of condensation. Before the sale or installation of a replacement furnace, the following conditions should be noted:

1. Unlined nasonry chieneys are unacceptable.
2. Outside nasonry chimeys (one or nore sides exposed to outdoor air) are unacceptable for venting of these furnaces.
A. It is recomended that the chinney be utilized as a path for venting to the outside by running B-vent up thru the chinney.
B. The B-l vent nust be installed in accordance with the terns of their listings and vent manufacturer's instructions. When type B-1 vent is used, an adapter is required between the draft outlet and B-1 vent.
C. The B-1 vent must be nechanically supported in the nasonry chinney.
D. The botton of the B-1 vent cap nust be at least 6 inches above the masonry chinney.
B. Another gas burning appliance such as a water heater may be common vented with the furnace. See section on conson venting.
P. The top of the nasonry chimney nust be sealed with a metal cap to prohibit cold air entry down the chinney surrounding the netal vent.
3. Inside lined nasonry chinneys can only be used on a conmon vent installation with a draft hood appliance such as a water heater. The draft hood appliance cannot be equipped with a vent damper as it will block the flow of dilution air required to keep the vent primed and dry.
4. An inside nasonry chinney is not acceptable for venting the furnace only.
A. It is reconnended that the chinney be utilized as a path for venting to the outside by running B-vent up thru the chinney.
B. The B-1 vent nust be installed in accordance with the terms of their listings and vent manufacturer's instructions. When type B-1 vent is used, an adapter is reguired between the draft outlet and B-1 vent.
C. The B-1 vent nust be nechanically supported in the masonry chinney.
D. The botton of the B-1 vent cap must be at least 6 inches above the nasonry chimney.
5. The top of the nasonry chinney must be sealed with a metal cap to prohibit cold air entry down the chimney surrounding the retal vent.
6. Underground vent connectors or flue gas passages are unacceptable.
7. No solid fuel burning appliances are pernitted to be comnonly vented with these furnaces.

SUGGESTED VENT REMEDIES

The following actions are suggested to inprove vent systen operation:

1. Por any venting problen:
A. Set furnace to full input rate, *and
B. adjust blower tenperature rise within nameplate range.
*MOTB: Care nust be taken to derate furnaces installed at elevations more than 2,000 feet above sea level. Refer to "Orifice Sizing" section of this manual.
2. Vent connectors:
A. Avoid unnecessary elbows, bends, or restrictions in the flue systen.
B. Insulate any long single-wall netal vent connectors or replace with double-wall pipe.
C. Avoid blowing conditioned air fron the plenum or outside conbustion air directly across the vent connector leaving the furnace. It nay be necessary to insulate the vent connector to avoid this problen.
D. When appliances are connon vented, the connon venting infornation on pages 32 and 33 nust be adhered to.
3. Por excess condensate fron a type B-1 vent:
A. Insulate those sections of the vent exposed in unheated spaces and outdoors, or
B. Check for oversized vent systen.
C. Provide suitable drain.
4. Por recurring lockout of the positive pressure sensor:
A. Check for adequate supply of conbustion air. A very tight basement or furnace room can create air starvation which will trip the positive pressure sensor. An outdoor air supply to the furnace room or a louvered door nay be required.
B. Renove all unnecessary elbows or restrictions from the vent system, especially in the first foot of vent connector above the furnace.
C. Check the vent systen for any obstructions and correct as necessary.
D. Insulate vent connectors or replace then with double wall pipe.
B. If vent is undersized, replace it with a new properly sized vent.
P. Check for an exhaust air fan or device that nay create a negative pressure within the structure. If such a device is present, provisions nust be nade to separate the furnace roon or enclosure from the rest of the structure affected by the negative pressure.

Adequate conbustion air nust then be introduced to the furnace roon for proper operation.

VENT RESIZING INSTRUCTIONS

When an existing furnace is renoved fron a venting system serving other appliances, the venting system is likely to be too large to properly vent the remaining attached appliances.

The following steps shall be followed with each of the appliances renaining connected to the comnon venting systen, placed in operation one at a tine while the other appliances remaining connected to the comon venting system are not in operation.

1. Seal any unused openings in the connon venting systen.
2. Visually inspect the venting systen for proper size and horizontal pitch and determine there is no blockage or restriction, leakage, corrosion, and other deficiencies which could cause an unsafe condition.
3. Insofar as is practical, close all building doors and windows and all doors between the space in which the appliances remaining connected to the connon venting systen are located and other spaces of the building. Turn on clothes dryers and any appliance not connected to the common venting system. Turn on any exhaust fans, such as range hoods and bathroon exhausts, so they will operate at maximum speed. Do not operate a sumer exhaust fan. Close fireplace danpers.
4. Pollow the lighting instructions. Place the appliance being inspected in operation. Adjust thermostat so appliance vill operate continuously.
5. Test for spillage at the draft hood relief opening after 5 ninutes of main burner operation. Use the flame of a match or candle, or smoke fron a cigarette, cigar, or pipe.
6. After it has been deternined that each appliance renaining connected to the common venting system properly vents when tested as outlined above, return doors, windows, exhaust fans, fireplace danpers and any other gas-burning appliance to their previous conditions of use.
7. If improper venting is observed during any of the above tests, the common venting system must be corrected.

VENTING TROUBLESHOOTING PROCEDURES

Symptons	Possible Causes	How To Check And/Or Correct
Downdrafting through the furnace	Negative pressure within the structure caused by exhaust fan of device	Check for downdraft in vent where vent connects to unit with flane from a candle or a match, or smoke from a cigarette, cigar, or pipe.
	Location of vent terninal	Verify that vent termination is position with the recommended specifications stated in this manual.
	Incorrect or absent vent terninal	Verity that the vent terminal is designed for and is compatible with the venting system.
Condensation in venting systen	Oversized venting systen	Look for condensation in or around vent pipe joints or around flue connections at furnace. To correct this condition, design the venting systen in accordance with the National Fuel Gas Code, ANSI-2223.1-latest edition and addenda Z223.1a latest edition
	Uninsulated vent installed in an unconditioned space	Check for condensation in or around vent pipe joints. Also check around the flue connecting areas on the unit. Insulate the vent in unconditioned space to prevent the above condition.
	Running vent as a liner up an existing chimney without capping off the chimney	Check to make sure the space between the vent and the inside of the chinney has been sealed. With this space being open, it nay allow too nuch cold air in and around the vent pipe allowing the flue products to condense causing condensation back at the unit.

VERTICAL VENTING INSTRUCTIONS

This furnace nay be vented directly to the outside through a suitable chimney. THIS FURNACE AS SHIPPED FROM THB EACTORY IS SUITABLB FOR A DEDICATED FLUB ONLY. It is not suitable for use with PVC, CPVC, ABS type piastic pipe. With the addition of optional field-installed Connon Venting Kit, it is suitable to common vent this furnace along with another gas burning appliance to a single chinney for ease of installation. Refer to section on Connon Venting beginning on Page 32 of this instruction manual for complete details. The vent must be in accordance uith Part 7, Venting of Equipnent, of the National Fuel Gas Code, ANSI Z223.1-latest edition and addenda, 2223.la-latest edition, or applicable provision of the local building codes.

This unit nay also be horizontally vented with high temperature plastic pipe. If this type of vent is desired, the proper material and installation must be taken into consideration. Refer to the sidewall venting instructions section on page 17.

Host installing dealers check the suitability of the vent or chinney when installing a replacement furnace. Their observations and experience have produced a set of guidel ines for judging the suitability of the vent or chinney. Generally, these guidelines have proven workable. They have been modified over a period of years, taking successes and setbacks into account. For the last 30 years, furnace technology has remained relatively constant. That technology is now changing. With the benefits that new technology brings, we must all reevaluate our past practices and nake changes where needed. For those who, as a natter of course, check add-on and replacenent vents according to the provisions contained in the National Euel Gas Code (NEPA 54-latest edition or ANSI 2223.1-latest edition), these installation instructions contain only supporting information. For those who do not currently ensure that the existing vents satisfy these requirements, we provide the following cautions and guidelines.

General Instructions

1. Yent connectors serving Category I and Category II appliances shall not be connected into any portion of mechanical draft systens operating under positive pressure.
2. For Category II, III, and IV furnaces, the venting system shall be installed in accordance with the furnace nanufacturer's installation instructions.
3. This furnace shall be connected to a factory built chimney or vent complying with a recognized standard, or a nasonry or concrete chinney lined with a lining naterial acceptable to the authority having jurisdiction.
4. The vent connector nust be aluninum pipe and shall be the same size as the flue outlet on the furnace. Reep the vent as short and direct as possible. Type B-1 pipe is recomended.

This applies only when not horizontally venting with plastic pipe. When horizontally venting with plastic pipe, refer to the sidewall venting instructions below.
5. Maintain a mininum clearance of $6^{\prime \prime}\left(1^{\prime \prime}\right.$ for $\left.B-1\right)$ to any portion of the vent connector from any adjacent conbustible naterials. Single wall vent connector is permitted only uithin the same space (roon or area) as the furnace. B-1 vent is required whenever the vent is enclosed or passes through floors, walls, ceilings, roofs or furred-out spaces. Joists, studs, floors, dry wall, paneling, sheating, rafters, roofing and other naterials classified as combustible must not be closer than $1^{\prime \prime}$ clearance to $B-1$ vent.
6. If connected into masonry chinney, the vent pipe must be inserted into, but not beyond the inside wall of the chinney.
7. The gas vent nust estend at least 2 feet above the highest point where it passes through the roof of a building (3 feet for a chimney) and at least 1 foot higher than any portion of a building within a horizontal distance of 10 feet. See Figure 5.
8. The vent pipe systen shall be installed so as to avoid excessive turns which create unnecessary resistance to flow of vent gases.
9. Horizontal runs shall be as short and direct as possible. The maximum length of a single-wall vent pipe shall not exceed 75 percent of the height of the vent systen. The maximum length of a Type B-1 double wall flue connection shall not exceed 100 percent of the height of the vent system.
10. All horizontal vent pipe shall be pitched upward fron the furnace at least $1 / 4$ inch per foot.
11. All vent systens shall be adequately supported to maintain proper clearances, to prevent physical damage, and to prevent separation to joints.
12. Yents passing through an exterior conbustible wall nust use a ventilated wall thimble. See Eigure 6.
13. Yents passing through floors or ceilings nust be fire-stopped. See Figure 7 and Figure 8.
14. Horizontal portions of the vent systen shall be supported to prevent sagging. Pipe strap or equivalent neans should be used every 3 to 5 feet depending upon pipe joint lengths.
15. A furnace shall not be connected to a chimney flue serving a separate appliance designed to burn solid fuel.

FICURE 6 -- MORIZONTAL RUN PENETRATIMG COMBUSTIBLE WALL

FICURE 7 -- VENT THROUCH FLOOR

FIGURE B -- VENT THROUGH CEILING

SIDEWALL VENTING INSTRUCTIONS

This furnace nay be vented horizontally and vented through a sidewall only when using an approved, sealed, high tenperature plastic vent systen as detailed below. When installed with this type of venting system, the pressure within the vent becones positive pressure and thus requires the special sealed vent system.

This change in pressure changes the furnace from a Category I to a Category III appliance. The marking on the furnace need not change as this construction has been AGA design certified as a dedicated aiternate vent syster.

The sealed vent systen nust be a dedicated vent and cannot serve any other fuel burning appliance. Common venting is not pernitted for this type of venting installation. The requirements and limitations of horizontal venting are very strict. All horizontal vent installations nust be made in accordance with these instructions.

Approved Sidewall Vent Components

TABLE 7
APPROVED SIDEWALL VENT COMPONENTS

Description	Plexco Pt. No.	Hart \& Cooley Pt. No.
$3^{\prime \prime} \times 5 \mathrm{ft}$. pipe	901220	3UP5
$3^{\prime \prime} \times 10 \mathrm{ft}$. pipe	902474	$3 \mathrm{UP10}$
$3^{\prime \prime}$ coupling	905630	3UC
$3^{\prime \prime}$ tee	905268	3 IV
Drain adapter	906646	3UDP
3" $\times 90$ Deq. Elbow	905269	3UES90 or 3UE90
$3^{\prime \prime} \times 45$ Deg. Blbow	905639	3UE45
Wall Thinble $3^{\prime \prime}$	See Note (1)	3UWT
Ternination	901971	3UIT
**4 to 3 reducer	905744	4UR3
$4^{\text {² }}$. 5 ft . pipe	903851	
4* coupling	905807	
$4^{\prime \prime} \mathrm{8} 90 \mathrm{deg}$. elbow	905772	
$4^{\prime \prime}$ tee	906883	
Condensate drain	903855	
Ternination	906882	

**115,000 \& 145,000 BTU models must incorporate a $4^{\prime \prime}$ to $3^{\prime \prime}$ reducer at flue connector.
(1) $905662,906972,905295$

Approved Sealants

MAPA Balkanp-765-1469
GB--C-550
Bart \& Cooley--3URTV
Dow Corning--732
Or equivalent silicone adhesive (400 degree E)

General Instructions

1. The naximun vent length is 40 total equivalent feet with each 45 degree elbow counting as $2-1 / 2$ feet and each 90 degree elbow counting as 5 feet. Do not count the vent termination in this neasurement.

Example: 20 feet of straight vent pipe with three 90 degree elbows equals 35 equivalent feet.
2. The ninimun vent length is 3 feet and one 90 degree elbow.
3. All horizontal runs nust slope upwards not less than $1 / 4$ inch per foot from the furnace to the vent terninal.
4. All horizontal pipe nust be supported every five feet to prevent sagging, low spots in the vent may coilect condensate and prevent furnace operation.
5. All horizontal vent installations nust have a minimum $18^{\prime \prime}$ vertical rise out of furnace outlet. See Figure 9.
6. A 2 inch clearance fron conbustibles nust be maintained for the entire vent system.
7. All horizontal vent installations nust have a drain fitting within the first 18 inches from the furnace. See Yigure 9.
8. All drain lines fron the drain fitting must be installed in a manner to form a water trap in the drain line. See Figure 9.
9. Any drain line located in an unconditioned space nust be protected from freezing. The freezing of the drain line can cause drain blockage in condensate entering the combustion air blower and causing premature failure.

FIGURE 9

Location of Vent Terminal

The vent location aust neet the requirenents listed in the following instructions or applicable codes, whichever specifies the nost clearance or strictest linitations.

1. The vent terninal sust be a mininun of 14 inches above ground level, above normal snow levels and a minimum of 8 (maxinun 10) inches out from wall. See Figures 9 and 10.

The botton of the vent terninal nust be at least $14^{\prime \prime}$ above finished grade. A vertical riser may be required to achieve this (8 igure 10). If nornal snow accumulation is a consideration, a vertical riser will be required to raise vent terninal to a point at least $12^{\prime \prime}$ above the anticipated snow level (Figure 10).

Because of additional piping being exposed to the outside weather, insulation is reguired to keep from freezing.

2. Not above any walkways.
3. Should the vent terninal be located adjacent to a public walkway, it must be not less than 7 feet above ground.
4. The vent terninal nust be 4 feet fron and not above any door or window.
5. At least 3 feet above any forced air inlet terninal servicing any other appliance located within 6 feet horizontally.
6. At least 4 feet horizontally from electric meters, gas meters, requlators and relief equipment.
7. Under certain wind conditions sone building materials may be affected by flue products expelled in close proxinity to unprotected surfaces. Sealing or shielding of the exposed surfaces with a corrosion resistant naterial (such as aluninum sheet) nay be required to prevent staining or deterioration.
8. Do not locate vent too close to shrubbery as flue product may stunt or kill then.

CAUTION

As a natural part of the unit's operation, normal products of combustion, including water vapor are vented to the atnosphere. Since the outside air temperature can be well below 32 degree P., it is possible that the water vapor in the exhaust will freeze, causing an ice buildup around the discharge opening of the pipe. During periods of extremely cold weather and prolonged operation of the furnace, this ice build-up could become quite Iarge. The manufacturer does not recomend the installation of these units in locations above frequent vehicular and/or pedestrian traffic. The ice build-up could present a potentially hazardous situation if it becones dislodged. The nanufacturer will NOT be held responsible for any injury or property danage resulting from any improper installation.

Assembly Of Vent

Pollow pipe nanufacturer's instructions for cutting pipe and sealing pipe at various connections.

Vent Passage Through A Combustible Wall

Vent passage through a conbustible wall is permitted when the instructions below are followed.

1. When penetrating a franed wall (inner and outer wall with space between the two walls) use the wall thimble listed in Table 7. This thinble can be used on walls 2 inches to 8 inches thick. If penetrating a conbustible wall which is 30 linear feet or more from the appliance, no thimble is required and a 0 inch clearance is acceptable. If the wall is less than 30 linear feet from the appliance, the wall thimble must be used. See Figure 11.

EIGURE 11
INSTALLING VENT THRU COMBUSTIBLE WALLS

2. When penetrating a single wood wall such as a header, footer or joist ($2 \times 8,2 \times 10,2 \times 12$, etc.) a 1 inch clearance aust be naintained. This is achieved by cutting a 5 inch diameter hole in the wood, and with a $6^{\prime \prime} \times 6^{\prime \prime}$ or larger sheet of non-conbustible material (aluninum, galvanized, etc.) cut a 3 inch diameter hole in the center. Fasten this sheet of naterial to the outside of the header or footer with the 3 inch hole centered inside of the 5 inch hole. The vent pipe can now be run through the 3 inch hole while maintaining the 1 inch clearance fron conbustibles. If the combustible wall is located 30 linear feet or further from the appliance, the above steps are not necessary and a 0 inch clearance is acceptable. See Eigure 12.

X. THERMOSTAT

Install the thermostat in accordance with instructions packed with it. Locate the thermostat 4-1/3 feet from the floor on an inside wall away fron drafts, warm air registers and floor or table lamps. Refer to furnace wiring diagrans for connections.

All 24 V wall thernostats have heat anticipators to compensate the thermostat for various system controls and allow the best possible cycle rates. Some anticipators are fixed and reguire no adjustment. However, the najority of wall thermostats have adjustable anticipators and do require adjustment to match the current rating of the gas valve. The noninal heat anticipator setting for these furnaces is . 80 A . The current flow in the " H " conductor should be checked vith anneter if at all possible.

Pailure to adjust the anticipator lever to correspond to the actual current draw through the thermostat will cause severe short cycling if set too low and room temperature may never attain the thermostat set point, and if set too high, will cause roon temperature to overshoot the set point.

XI. BLOWER OPERATION

All models are three or four speed direct drive and are equipped with a heating-cooling blower relay. When matched with the appropriate wall thermostat offers manual blower operation from the wall thermostat for air circulation.

Blower Speed Adjustment

WARNIMG
When servicing or changing blower notor speeds, always turn off electrical power supply to
the furnace to prevent possibility of electrical shock hazard.

In the event that nore air or less air is desired for either the heating or cooling mode, blower speeds nay be adjusted by removing the undesired motor lead from its appropriate wire and replacing it with the speed desired.

WARNIMG

Unused notor wires within the junction box are electrically energized when the motor is operating and must be adequately insulated. Failure to do so can cause the motor to short out or slow down which could result in the furnace overheating and/or electrical shock and/or fire hazard.

CAUTION

After the furnace is operating with filters installed and all cabinet panels are in place, check the tenperature rise through the unit to insure it is within the range specified on the furnace rating plate. If it is not, adjust blower speed until the temperature rise is within specified range.

XII. FILTERS

All models are shipped with filters. See Table 8 for sizes. Hi-Boy nodels have the filters in their intended positions. Hi-Boy models are shipped with filter on the left side. They can alternately be located on right side or botton. See following infornation. The counterflow models require a bracket installation and final filter location projects into return air plenum attachment to furnace, see Figures 16 and 17. Refer to Eigures 18 and 19 for Lo-Boy models.

TABLE 8

PILTER SIZES POR GAS FURNACES	
Model	Size
$\begin{gathered} \text { IL85D42A } \\ \text { Lo-Boy } \end{gathered}$	(1) $18-3 / 4 \times 20 \mathrm{P}$
IL115048A Lo-Boy	(1) $22-3 / 4 \times 20 \mathrm{P}$
$\begin{aligned} & \text { IL145060A } \\ & \text { Lo-Boy } \end{aligned}$	(2) $13 \times 20 \quad \mathrm{P}$
$\begin{aligned} & \text { I } 1600036 \mathrm{~B} \\ & \text { Hi-Boy } \end{aligned}$	(1) $16 \times 25 \quad \mathrm{P}$
$\begin{aligned} & \text { IH85048B } \\ & \text { Hi-Boy } \end{aligned}$	(1) 16×25
$\begin{aligned} & \text { IH115D48B } \\ & \text { Bi-Boy } \end{aligned}$	(1) $16 \times 25 \quad \mathrm{P}$
IC60D36A Counterflow	(1) 15×20
IC85D42A Counterflow	(2) 10×20
ICl15048A	(1) $15 \times 20 \quad \mathrm{P}$
Counterflow	(1) 10×20

Filter Locations--Removal and Replacement Procedures--Hi-Boy Models

To renove filters from ALL sectional Hi-Boys, first renove the upper burner door and then the lower blower compartment door by grasping top of door and pull up and away from the furnace. Then, remove the " S " clip and spring by pulling the clip towards the front of the furnace.

Por right hand side filter location, relocate filter and retaining spring assenbly to right side filter brackets.

The filter nay now be renoved simply by pulling it towards the center of the furnace and outward.
The location nay vary, depending on which side the installer located the return air duct.
This filter is the pernanent high velocity type foam filter which may be washed and used over and over. DO NOT replace it with a fiberglass filter of the sane size.

To replace filter, reverse the above process.

To renove filter fron the optional external filter rack, grasp the exposed end of the filter and pull from the filter rack.

The location nay vary, depending on which side the installer located the return air duct.
This filter is the pernanent high velocity type foam filter which may be washed and used over and over. DO NOT replace it with a fiberglass filter of the sane size.

To replace filter, reverse the above process.

Alternate Bottom Filter Location

All Hi-Boy nodels have a renovable panel on the base for a bottom return air installation.
To utilize this feature, renove the fill plate by bending the four tabs up 90 degrees. Relocate filter retainer spring fron side to botton brackets. Leave the four tabs bent in the upright position as they will now serve to keep the filter positioned left to right.

On the 60,000 nodel the standard $16 \times 25 \mathrm{xl}$ filter nust be cut down to $12 \times 25 \mathrm{xl}$. See illustration below.

EIGURE 15

Filter Locations--Counterflow Models

Counterflow models nornally have filters installed in the return air plenum above the furnace unless a common return air/filter grille is used.

The electrical switch should be turned "off" before the front door to furnace is removed. After removing the front door, renove the left side filter door in the upper section of the furnace. Refer to Rigures 16 and 17 below for proper filter locations.
ttach filter support to furnace as show with two sheet netal screus. The filter can be installed and renoved through the left filter door.

FIGURE 17
IC85042A, IC115D48A

Filter Locatfons--Lo-Boy Models

Lo-Boy nodels have the filters installed in the return air cabinet section of the furnace. They are accessible fron the rear of the furnace by renoving the blower/filter access door. The electrical switch should be turned "off" prior to renoving the access door. Refer to Figures 18 and 19 below.

FIGURB 18

IL85D42A, IL115D48A

REAR VIBH HITE BLOHER/ PILTER ACCESS DOOR RBHOVED

FIGURE 19

IL145060A

REAR VIEH HITH BLONER/
FILTER ACCESS DOOR REMOVED

XIII. SEQUENCE OF OPERATION

On a call for heat fron the thernostat the DPST relay coil is energized through the normally closed contact of the air proving pressure switch. When the relay coil is energized, the relay contacts close which sinultaneously energizes the induced draft blower and locks in the relay coil. Once sufficient draft is established, the ignition nodule will be energized through the normally open contact of the pressure switch. The pilot ignition electrode will begin to spark and pilot valve will be energized allowing pilot gas flow. Upon establishnent of pilot burner flane, adequate flane for burner ignition is proved to control module at which point nain gas valve is energized and spark is discontinued.

XIV. MAINTENANCE INSTRUCTIONS

The furnace and its vent systen should be inspected annually by a gualified service agency, generally prior to the heating season.

MOTB: Prior to the start of any of the following maintenance procedures shut off all power to the unit.
Routine naintenance procedures are the responsibility of the owner and are contained in the Owner's Manual. These are briefly outlined below:

1. Air Pilters. Check the condition on at least a monthly basis when the furnace is in use or replace whenever it is necessary.
2. Lubrication Requirenents. Direct drive notors are permanently lubricated, no maintenance required. The induced draft blower notor should be oiled every six months with SAE2O motor oil.
3. Check Tenperature Rise. Adjust blower speed if necessary to obtain a temperature rise within the range specified on the furnace rating plate.
4. Basic Rranination of Furnace. Visual inspection of pilot flame and the main burners. Also inspection of the burner conpartnent and the vent systen for sooting and scaling.
5. Periodic Inspection of the Vent System. Visual inspection of the vent system from the furnace to the chinney for any leaking or defective parts.
6. Periodic Inspection of Drain Line. On installations with sidewall venting the drain line should be inspected for blockage or possible freezing. Blockage of drain lines can result in premature combustion air blower failure.

XV. REPLACEMENT PARTS

Replacenent parts for the gas furnaces are available through local distributors.
Parts list covering all of the nornally serviceable itens are listed in the Replacement Parts Manual supplied with this furnace. When ordering parts or naking inquiries pertaining to any of the furnaces covered by these instructions, it is very important to always supply the COMPLETE model number and serial number of the furnace. This is necessary to assure that the correct parts (or approved alternate parts) are issued to the service agency.

The replacenent parts nanual numbers are as follows:

> IH Series Bi-Boy $-2^{2110-853}$
> IC Series Counterflow -- $2110-854$
> IL Series Lo-Boy -- $2110-855$

XVI. SERVICE AGENCY PROCEDURES

1. The internittent pilot lights only when the thermostat calls for heat and the main burner lights within a few seconds thereafter. It is recomnended that any observation of pilot or nain burner operation be done only with the burner compartnent door in place and viewing through the combustion air slots.

The pilot flane can be adjusted by removing the pilot adjustment cover screw. Turn inner adjustment screw clockuise to decrease and counterclockwise to increase pilot flane. Be sure to replace cover screw after adjustment to prevent possible gas leakage.

2. Observe the nain burners in operation, viewing through the combustion air slots. The flame should be nostly "blue" uith possibly a little orange at the tips of the flames. The flames should be in the center of the heat exchanger conpartnents and not impinging on the heat exchanger surfaces themselves.

The inner cone of the flane as show below should be approxinately 1 inch to $1-1 / 4$ inches tall from the burner ports when natural gas is used. When LP gas is used, the inner cones should be approxinateiy $1 / 2$ inch tall fron the burner ports. If no prinary air adjustment has been nade after the furnace has been converted for use with LP gas, the inner cones may be lying flat on the burner ports. This condition can be corrected by decreasing the anount of prinary air in the burners. Slowly close down the primary air shutters at the end of each burner until the desired inner cone height is obtained. Be sure to tighten all the air shutter set screus once the adjustnent has been nade.

Observe the fire until the blower starts (there is a nornal delay period until the heat exchanger warms up). There should be no change in the size or shape of the flame. If there is any wavering or blowing of the flane on the blower start-up, it is an indication of a possible leak in the heat exchanger.

The air shutters are factory adjusted completely open. If flashback occurs, the air shutters may be closed slightly to prevent the flashback.

PIGRR 21

FIGURE 22

IH SERIES MODELS

IC SERIES MODELS

XIX. COMMON VENTING REQUIREMENTS

Por common venting this furnace with another gas burning appliance, the addition of Common venting kit is required. This kit is field installed by the installing contractor following the instructions packaged with the kit. It is a very simple procedure requiring only the removal and reinsertion of two screws and the reconnection of one wire. The kits that are required are detailed below:

TABLE 9		
Furnace Model	Input Rating Btu/Hour	Common Venting Kit No.
IB60036B,C	58,000	$8620-005$
IH85D48B,C	86,000	$8620-006$
IH115D48B,C	115,000	$8620-006$
	58,000	$8620-011$
IC60D36A,C	86,000	$8620-011$
IC85D42A,C	115,000	$8620-011$
IC115D48A,C	86,000	$8620-006$
	115,000	$8620-006$
IL85D42A,C	145,000	$8620-005$
IL115D48A,C		
IL145D60A,C		

There are sone mininum specifications that apply to the connon venting system design. These are outlined below with additional reference nade to the jllustrations as shown:

TABLE 10

Purnace Model	Minimun Total Yent Height "H"	Eurnace Yent Connector Sizes	Mininum Comnon Vent Pipe Connector	
			3" Water Heater	4" Water Heater
IH60036B, C	$8{ }^{1}$	3"	4"	4"
IH85048B, C	$8{ }^{\prime}$	3"	4^{n}	$4 "$
IH115048B, C	$8^{\prime \prime}$	$4 "$	5"	$5{ }^{\prime \prime}$
IC60036A, C	$8^{\prime \prime}$	3"	$4 "$	$4{ }^{\prime \prime}$
IC85D42A, C	$8{ }^{\prime}$	$4{ }^{\prime \prime}$	4"	$4 "$
ICl15D48A, C	$8{ }^{\prime}$	4 "	5 "	5"
IL85D42A, C	$8{ }^{1}$	3"	$4^{\prime \prime}$	$4 "$
ILl15048A, C	$8{ }^{\prime}$	$4{ }^{\prime \prime}$	5"	5"
[L145060A, C	8^{\prime}	4 "	5"	5"

See the following table illustrations for conson venting arrangenents:

Purnace Model	Vented With $3^{\text {n }}$ Nater Heater	Vented With 4" Water Heater
$\begin{aligned} & \text { IH60036B,C } \\ & \text { IR85D48B,C } \\ & \text { IH1 15D48B,C } \end{aligned}$	$\begin{aligned} & \text { Fig. } 21,22 \\ & \text { Fig. 21, } 22 \\ & \text { Fig. 25, } 26 \end{aligned}$	$\begin{aligned} & \text { Fig. } 23,24 \\ & \text { Fig. 23, } 24 \\ & \text { Fig. } 25,26 \end{aligned}$
$\begin{aligned} & \text { IC60D36A,C } \\ & \text { IC85D42A,C } \\ & \text { IC115D48A,C } \end{aligned}$	Fig. 21, 22 Fig. 21, 22 Fig. 22, 23	$\begin{aligned} & \text { Fig. 23, } 24 \\ & \text { Fig. 23, } 24 \\ & \text { Fig. 25, } 26 \end{aligned}$
IL85042A, C IL1150488, C IL145060A, C	$\begin{aligned} & \text { Fig. } 21,22 \\ & \text { Fig. 25, } 26 \\ & \text { Fig. } 25,26 \end{aligned}$	$\begin{aligned} & \text { Fig. 23, } 24 \\ & \text { Fig. 25, } 26 \\ & \text { Fig. 25, } 26 \end{aligned}$

Figure 23

Figure 25

Figure 24

Figure 26

Figure 28

