CB36EHQ BLOWER COIL ### INSTALLATION INSTRUCTIONS ### **DIMENSIONS** for architects and installation requirements # IMPORTANT This product has been designed and manufactured by BARD MANUFACTURING COMPANY to the highest quality standards. When it is observed seconding to the printed highest of set is factory operation. Packaged with the product are instructions for its installation, use and park. PLEASE READ ALL OF This INFORMATION CAREFULLY. COMPLETELY. It is the responsibility of the diagrae, builder, supplier or their selections of the builder, supplier or their selections of the limited warranty, who will service the equipment, also the provisions of the limited warranty, who will service the equipment, and the cost, if any to you. THE UNIT REGISTRATION CARD MUST BE RETURNED TO THE PACTORY BARD MANUFACTURING CO. P. O. Box 607 Bryan, Ohio 43508 Part #7861-043 | builder, supplier or their salesmen to | |--| | explain the proper operation of this | | equipment, also the provisions of the | | limited warranty, who will service the | | equipment, and the cost, if any to | | you. | | THE UNIT REGISTRATION CARD | | MILET DE SETUDNED TO THE | | CB36EHQ SPEC | FICATIONS | | | | | |---------------------|-------------|--|--|--|--| | Electrical | | | | | | | Rated Voltage | 240 | | | | | | Phase | 1 | | | | | | Hertz | 60 | | | | | | Voltage Range | 197-253 | | | | | | Motor and Blower | | | | | | | Motor H.P. | 1/3
2-5 | | | | | | Motor Amps | | | | | | | Motor RPM | 1075/3 Sp | | | | | | Blower | 10x9 Direct | | | | | | Heat Transfer Coil | | | | | | | Face Area | 3,17 | | | | | | Rows | • | | | | | | Fins Per In. | 14 | | | | | | Permanent 1 | Filter | | | | | | Size | 20 x 22-1/2 | | | | | | Refrigerant Control | | | | | | | Capillary Tube | | | | | | | R-22 Charge | 8 oz. | | | | | | Shipping Weight | 1bs. 150 | | | | | ### AIRFLOW PERFORMANCE DATA | MAXIMUM E.S.P. OPERATION INFORMATION* | | | | | | | | |---------------------------------------|-----------------------|-----|--------------------|------|--|--|--| | Mode of | Rating of
Electric | В | Blower Motor Speed | | | | | | Operation | Heaters** | Low | Medium | High | | | | | Heat Pump & | 20Kw | N/C | N/C | .20 | | | | | Electric | 15Kw | .25 | .30 | .35 | | | | | Heaters on | 10Kw | .30 | .30 | .45 | | | | | Together | 5Kw | .30 | .30 | .45 | | | | | Heaters | 30Kw | N/C | N/C | .35 | | | | | only on. | 25Kw | .45 | .50 | •55 | | | | | Emergency | 20Kw | .45 | .50 | .55 | | | | | Heat | 15Kw | .45 | •50 | •55 | | | | | Position | 10Kw | .45 | .50 | •55 | | | | | | 5Kw | .45 | •50 | •55 | | | | | CB36EHQ BLOWER PERFORMANCE | | | | | | | | | |-----------------------------------|-------|----------------------|-------------------|--|--|--|--|--| | E.S.P.
Inches H ₂ 0 | CFM - | - DRY COIL WITH FILE | TER
High Speed | | | | | | | .00 | 1070 | 1175 | 1375 | | | | | | | .10 | 1050 | 1150 | 1335 | | | | | | | .20 | 1020 | 1120 | 1295 | | | | | | | .30 | 995 | 1070 | 1235 | | | | | | | .40 | 960 | 1035 | 1175 | | | | | | | .50 | 915 | 970 | 1105 | | | | | | | .60 | 825 | 895 | 1045 | | | | | | | .70 | 685 | 745 | 925 | | | | | | | .80 | 580 | 625 | 680 | | | | | | RECOMMENDED AIRFLOW RANGE BASED ON OUTDOOR UNIT SIZE C30HPQ3 800-1075 Cfm C36HPQ3 975-1275 Cfm ### GENERAL Units are shipped completely assembled and internally wired, requiring only duct connections, thermostat wiring and external 220-240 volt AC power supply. The same CB36EHQ air handler, with its various Kw electric heat options, is suitable for use with the following heat pump outdoor sections. Refer to section titled, "Heat Pump With Electric Heat" for complete information. ### APPROVED OUTDOOR UNITS ### HEAT PUMPS C30HPQ3 ### UNPACKING Upon receipt of equipment, carton should be checked for external signs of damage. If damage is found, request for inspection by carrier's agent should be made in writing immediately. ### DUCTWORK Design the ductwork according to methods given by the National Warm Air Heating and Air Conditioning Association. When duct runs through unheated spaces, it should be insulated with a minimum of two inches of insulation. Use insulation with a vapor barrier on the outside of the insulation. Flexible joints should be used to connect the ductwork to the equipment in order to keep the noise transmission to a minimum. ### LOCATION AND CLEARANCES All access to the equipment is from one side, and at least 24 inches should be provided from this side for service access. Unit casing is suitable for 0 inch clearance. The first two (2) feet of ductwork attached to the outlet (supply air) connections of the unit are to have a minimum of 1 inch clearance, with 0 inch clearance for any remaining ductwork. Unit may be installed in utility room, closet, basement, attic, or closed crawl space in either upflow or horizontal position. When installed horizontal in an attic installation, a platform should be made for the unit to sit on. This platform can be made from 3/4 inch plywood or boards. An auxiliary drain pan should always be used when equipment is installed over a finished living area, to provide protection from water damage in case of plugging of the primary drain line from the unit condensate collection pan. Secure four pieces of cork or live rubber, 4" x 4", of sufficient thickness to allow primary drain to clear edge of auxiliary drain pan, under each corner of the ### CONDENSATE DRAIN Determine where the drain line will run. This drain line contains cold water and must be insulated to avoid drops of water from dropping on ceiling, etc. A trap <u>must be</u> installed in the primary drain line below the bottom of the drain pan. For horizontal installations with auxiliary drain pan, a separate drain line should be run from the auxiliary drain pan and terminated where the home owner can see it. Be certain to show the home owner the location of the drain line and to explain its purpose. In the event of overflow of primary drain, water will collect in auxiliary pan and run out through the auxiliary drain line. It is not recommended that any condensate drain lines be connected to a sewer main. Drain lines must be installed in accordance with local codes. ### INTERCONNECTING TUBING It is recommended that the interconnecting tubing be the CT-series charged tubing sets. This is a precharged tubing set with an insulated suction line. Both suction and liquid line are equipped with the correct quick connect fittings for proper match up to the indoor and outdoor sections. The CT-series is available in standard tubing lengths of 15, 25, 35 and 45 feet. ### FILTER This unit must not be operated without a filter. It comes equipped with a permanent type filter that slides in and out through the filter access opening. It is so located that no changes are required if the optional side return air opening is selected to be used. The filter should be cleaned periodically throughout the year, as this is a heating and cooling system and operates year round. Permanent filters can be cleaned by washing in warm soapy water and rinsing clean. ### THERMOSTAT LOW-VOLTAGE WIRING A 24V terminal block is mounted on the inside of the unit. There is also a 24V terminal block located in the outdoor section of remote heat pumps and two tagged 24V wires in the outdoor section of remote air conditioners. Specific control circuit wiring diagrams for the various applications are referenced in the section HEAT PUMP WITH ELECTRIC HEAT. These diagrams detail the recommended controls and wiring to allow the best possible operation of the different types of systems with respect to energy conservation while still maintaining close comfort levels for the occupant. ### THREE SPEED BLOWER MOTOR THE AIR HANDLER is supplied with a multiple speed blower motor, using three speed taps to provide airflow variation for the different basic capacity ratings of the outdoor sections. ### MOTOR SPEED IDENTIFICATION Common - Yellon High - Black Medium - Blue Low - Red Capacitor - Brown THE HEATING-COOLING BLOWER RELAY provides for single blower speed operation of the motor. A manual change-over can be made by changing the motor speed tap that is connected to the blower relay. All unused speed taps must be taped securely and individually from one another so as not to short out the motor. Refer to unit wiring diagram for correct identification of relay terminals. All CB36EHQ's are shipped wired on high speed. Refer to CB36EHQ specification sheet for airflow performance chart on different motor speeds. The "Maximum E.S.P. Operation Information" details the available maximum static pressure for the various applications depending on Kw and motor speed. | | | | F. | ELD WIR | ING | DATA | | | | | | | |--|--------------------------------------|----------------------------|----------------------------------|-----------------|------------------------------|----------------------------------|-------------|---------------|---------------------------------|----------------------------------|--------------|-------------| | Model | KW | No. of
Circuits | Ampa
Ckt.A | city
Ckt.B | | wer
t.A
AL | | ng*
t.B | Ck
CU | Gr
t.A
AL | ound
Ck | t.B
AL | | CB36EHQ
CB36EHQ
CB36EHQ
CB36EHQ
CB36EHQ
CB36EHQ | 0
5
10
15
20
25
30 | 1
1
1
2
2
2 | 15
29
55
81
55
55 | 52
78
104 | 14
10
6
2
6
6 | 12
8
4
1
4
4
4 | 6
3
2 | 4
1
1/0 | 14
10
10
8
10
10 | 12
8
8
6
8
8
8 | 10
8
6 | 8
6
4 | CU - Copper Wire AL - Aluminum Wire | *Note - Table based upon the | |--| | assumption that 60° C (140 $^{\circ}$ F) wire | | will be used if the required ampacity | | is 100 amperes or less and that 75°C | | (167°F) wire will be used if the re- | | quired ampacity is more than 100 | | amperes. | | | | BLOWER CO | IL ELECTRICA | AL SPECIFIC | ATIONS | | |---|--------------------------------------|---|--|-----------------|----------------------------------|-------------------------| | Model | Rated KW | Amps * | Ampa | | Main | | | | <u></u> | | Circuit A | Circuit B | Circuit A | Circuit E | | CB36EHQ
CB36EHQ
CB36EHQ
CB36EHQ
CB36EHQ
CB36EHQ
CB36EHQ | 0
5
10
15
20
25
30 | 2.5
23.3
44.1
64.9
85.7
106.5
127.3 | 15
29
55
81
55
55
55 | 52
78
104 | 15
30
60
90
60
60 | 60
80
11 0 | *Total Unit Amps including blower motor. ALL FIELD WIRING MUST COMPLY WITH THE "NATIONAL ELECTRICAL CODE" AND ALL LOCAL ORDINANCES. ### UNIT OPERATION The controls in the CB36EHQ provide for manual/auto fan control in addition to the staging of the installed electric heat. Staging is accomplished in basic 10Kw increments, that is, each two (2) heating elements are controlled by one heat relay. | HEATER ELEMEN | T STAGING | |---------------------------|-------------| | Heater Kw | Stages | | 5, 10
15, 20
25, 30 | 1
2
3 | Heater stage designations are as follows on the 24V terminal strip: J - 1st Stage J - 1st Stage K - 2nd Stage L - 3rd Stage ### HEAT PUMP WITH ELECTRIC HEAT The system and its safety controls are designed in such a manner that the heat pump and up to 20Kw of the resistance strip heaters can operate at the same time, being brought on in stages. This does not rule out the possibility of there being a total installed Kw of 30Kw in the CB36EHQ; 20Kw of which can be operated in conjunction with the heat pump, and the remaining 10Kw (L - 3rd stage heat contactor) being utilized as heat pump "replacement" heat. This feature of "replacement" heat is normally used in the colder northern climates where emergency heat switches and compressor cut-offs are considered required equipment. This allows for total heating capability for the structure in case of a malfunction in the outdoor heat pump unit. Listed below are the appropriate control circuit wiring diagrams based on Kw rating, and also the number of field installed A-22 outdoor thermostats, Bard Part No. 8408-001 (10°-45°F Range), or 8408-005 (0-30°F Range), recommended for each application: | B36EHQ
Kw Rating | Control Circuit
Diagram | Quantity
of A-22's | |---------------------|----------------------------|-----------------------| | 5, 10 | HAH-I | 1 | | 15, 20 | HAH-2 | 1* | | 25, 30 | нан-3 | 2 | *Installer Option: If it is desired to have the 2nd bank of electric heat (Stage K) operate as 3rd stage heat, in conjunction with the heat pump, instead of coming on ONLY in place of the heat pump (by means of emergency heat relay or compressor cutoff) use two A-22's and wire by the 3rd stage outdoor thermostat as shown by note 2 on HAH-2 control circuit diagram on the top of page 7. In geographical areas where compressor cut-off would not be required because winter temperatures below $10^{\circ}\mathrm{F}$ are never experienced, disregard the compressor cut-off wiring shown on the control circuit diagrams, and DO NOT remove the factory wire between the compressor contactor coil and terminal 4 on the changeover relay as indicated. ### WALL THERMOSTATS The following wall thermostats and sub-bases should be used as indicated, depending on the application. | - | | THERM | OSTAT | SUB- | BASE | |-------------------|---------------------------|------------------|------------------------------------|------------------|------------------| | Appli-
cation | KW | Bard
Part No. | Descrip-
tion | Bard
Part No. | Descrip-
tion | | A/C
A/C
A/C | 5, 10
15, 20
25, 30 | 8403-004 | T87F1925
T872C1004
T872C1004 | 8404-005 | Q672A1005 | | H/P | All | 8403-004 | T872C1004 | 8404-001 | Q672F1026* | *Replacement indicator bulb is available, order from Bard Manufacturing Co. by Part No. 8611-027. É { _ P ## COOLING AND HEATING ANTICIPATION FOR WALL THERMOSTATS All 24V wall thermostats are built with both cooling and heating anticipators. The purpose of these anticipators is to compensate the thermostat for various system controls and allow the best possible cycle rates. The cooling anticipator for all thermostats, and the heating anticipator on a limited number, are fixed and require no adjustment. Most heating anticipators are adjustable and be no REGURES ALDUSTMENT to match the current rating of the relay, contactor or other control being cycled by that heating stage. In the case of a two stage heating thermostat there will be an anticipator for each stage, either both adjustable, one fixed and one adjustable, or both fixed. The fixed anticipators are rated for a maximum of 1.5A. The adjustable anticipators generally have a range of .2 - 1.2A, and MIST BE ADJUSTED. Failure to adjust the anticipator anticipator there are consequently ordered to the actual current draw pasing through that stage mercury switch and anticipator will cause severe short cycling conditions if set too low and room temperature may never attain the thermostat set point, and if set too high, will cause room temperature While oil burner primary controls and gas valves are normally marked with the nominal current rating, the contactors and relays installed in air conditioners and heat pumps are not. Listed below are some of the more popularly used controls and their nominal current ratings. over-shoot. | Cont
or R | Contactor
or Relay | Nominal
Current Rating | |--------------|--|---| | Ronaywell | | 2.04.44.88.88.88.88.88.88.88.88.88.88.88.88 | | квн | - Type 84
- Type 91
- Type 112
- Type 143
- Type 154
- Type 184 | 12
34
34
26
12 | | Elmrood | - 308020
- 306020
- 306020
- 306020
- 308030
- 308030 | .39
239
21
21
21 | Below is a procedure which allows accurate low amperage current measurements with a standard clampon ammeter with a 0.6A range. It is measurement always be taken, since variations in voltage, thermostat wire length, etc. can all cause some change in current draw. - 1. Wrap exactly 10 loops of thermostat wire (41) around the prongs of an Amprobe. - Let the heating system operate for one minute before reading the WI or W2 current draw. - 3. Olvide the reading obtained in Step 2 by 10. - Use the value calculated in step 3 to set the heat anticipator, - 5. Repeat the procedure for (W2) ## PARTS LIST SPLIT SYSTEM BLOWER COIL | PART NO. | DESCRIPTION | СВ36ЕНО | |----------|----------------------|---------| | 5152-034 | Blower Housing | x | | 5152-014 | Blower Wheel | × | | 8552-002 | Capacitor 370V | × | | 5811-010 | Capillary Tube | (3) | | 5651-006 | Check Valve | × | | 8401-006 | Contactor - Heater | x | | 5060-012 | Evaporator Coil | x | | 7003-006 | Filter | x | | 8614-006 | Fuse - Heater | × | | 8614-007 | Fuse - Heater | × | | 8614-017 | Fuse Block | х | | 8614-013 | Fuse Block | х | | 8614-014 | Fuse Block | х | | 8614-019 | Fuse Block | x | | 8604-023 | Heat Strip 5Kw | х | | 8604-024 | Heat Strip 10Kw | , x | | 8604-025 | Heat Strip 15Kw | x | | 8402-022 | Limit Switch | x | | 8105-010 | Motor - Blower | × | | 8200-003 | Motor Mount | × | | 5451-011 | Motor Mounting Parts | х | | 8201-009 | Relay - Blower | Х | | 5210-003 | Strainer | х | | 8607-005 | Terminal Board 24V | х | | 8607-001 | Terminal Block 230V | X | | 8402-025 | Thermal Cut-off | х | | 8407-015 | Transformer | x |