WATER SOURCE HEAT PUMPS

MODELS:

GTB1-A Blower Section
GTA3600UD1-A Coil Section
GTA4860UD1-A Coil Section
GTC36S1-ADCX Compressor Section
GTC48S1-ADCX Compressor Section
GTC60S1-ADCX Compressor Section
GTC36S1-ADNX Compressor Section
GTC48S1-ADNX Compressor Section
GTC60S1-ADNX Compressor Section

INSTALLATION INSTRUCTIONS

Earth Loop Fluid
Temperatures 25° - 110°
Ground Water Temperatures 45° - 75°

PATENT PENDING
GETTING OTHER INFORMATION AND PUBLICATIONS

These publications can help you install the air conditioner or heat pump. You can usually find these at your local library or purchase them directly from the publisher. Be sure to consult current edition of each standard.

National Electrical Code ANSI/NFPA 70
Standard for the Installation ANSI/NFPA 90A
of Air Conditioning and Ventilating Systems
Standard for Warm Air ANSI/NFPA 90B
Heating and Air Conditioning Systems
Load Calculation for Residential ACCA Manual J
Winter and Summer Air Conditioning
Duct Design for Residential ACCA Manual D
Winter and Summer Air Conditioning and Equipment
Selection
Closed-Loop/Ground Source Heat Pump IGSHPA
Systems Installation Guide
Grouting Procedures for Ground-Source IGSHPA
Heat Pump Systems
Soil and Rock Classification for IGSHPA
the Design of Ground-Coupled Heat Pump Systems
Ground Source Installation Standards IGSHPA
Closed-Loop Geothermal Systems IGSHPA
– Slinky Installation Guide

FOR MORE INFORMATION, CONTACT THESE PUBLISHERS:

ACCA Air Conditioning Contractors of America
1712 New Hampshire Avenue
Washington, DC 20009
Telephone: (202) 483-9370
Fax: (202) 234-4721

ANSI American National Standards Institute
11 West Street, 13th Floor
New York, NY 10036
Telephone: (212) 642-4900
Fax: (212) 302-1286

ASHRAE American Society of Heating Refrigerating,
and Air Conditioning Engineers, Inc.
1791 Tullie Circle, N.E.
Atlanta, GA 30329-2305
Telephone: (404) 636-8400
Fax: (404) 321-5478

NFPA National Fire Protection Association
Batterymarch Park
P.O. Box 9101
Quincy, MA 02269-9901
Telephone: (800) 344-3555
Fax: (617) 984-7057

IGSHPA International Ground Source
Heat Pump Association
490 Cordell South
Stillwater, OK 74078-8018
Geo-Trio™ GT Series Geothermal / Water Source Heat Pump Nomenclature

"A" Coil Section

```
```

Blower Section

```
```

Compressor Section

```
```

TABLE 1

INDOOR BLOWER PERFORMANCE (RATED CFM) ①

<table>
<thead>
<tr>
<th>MODEL</th>
<th>① Rated ESP</th>
<th>② MAX ESP</th>
<th>② Continuous Airflow</th>
<th>③ Mild Climate Operation in Part Load Cooling</th>
<th>④ Part Load Airflow</th>
<th>⑤ Full Load Airflow</th>
<th>⑥ Electric Heat Airflow</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTC3S61</td>
<td>0.15</td>
<td>0.60</td>
<td>600</td>
<td>700</td>
<td>850</td>
<td>1200</td>
<td>1300</td>
</tr>
<tr>
<td>GTC4S81</td>
<td>0.20</td>
<td>0.60</td>
<td>750</td>
<td>875</td>
<td>1075</td>
<td>1500</td>
<td>1600</td>
</tr>
<tr>
<td>GTC6S01</td>
<td>0.20</td>
<td>0.60</td>
<td>900</td>
<td>1050</td>
<td>1300</td>
<td>1800</td>
<td>1800</td>
</tr>
</tbody>
</table>

① Motor will automatically step through the various airflows with thermostatic control
② ESP = External Static Pressure (inches of water)
③ Maximum allowable duct static
④ Continuous airflow is the CFM being circulated with manual fan operation without any additional function occurring.
⑤ Will occur automatically for first 5 minutes of Part Load Cooling Operation.
⑥ Will occur automatically after five minutes of Part Load Cooling Operation.
⑦ Will occur automatically with control signal input.

NOTE: All values can be changed ± 10% via the ± adjustment dip switches on the tap select control inclusive in the GTB1-A Blower Section (see instructions later in this manual, or on wiring diagram in blower section).
TABLE 2
FLOW RATES FOR VARIOUS FLUIDS

<table>
<thead>
<tr>
<th>APPLICATION</th>
<th>MODELS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GTC36S1</td>
</tr>
<tr>
<td>Ground Loop (15% Methanol, Propylene Glycol, etc.)</td>
<td>8</td>
</tr>
<tr>
<td>Ground Water</td>
<td>6</td>
</tr>
<tr>
<td>Water Loop (Cooling Tower)</td>
<td>9.2</td>
</tr>
</tbody>
</table>

TABLE 3
SPECIFICATIONS

<table>
<thead>
<tr>
<th>MODEL</th>
<th>GTC36S1</th>
<th>GTC48S1</th>
<th>GTC60S1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical Rating (60HZ/1PH)</td>
<td></td>
<td>230/208-60-1</td>
<td></td>
</tr>
<tr>
<td>Operating Voltage Range</td>
<td></td>
<td>253-197 VAC</td>
<td></td>
</tr>
<tr>
<td>Minimum Circuit Ampacity</td>
<td>26.0</td>
<td>34.0</td>
<td>38.0</td>
</tr>
<tr>
<td>+Field Wire Size</td>
<td>#8</td>
<td>#6</td>
<td>#4</td>
</tr>
<tr>
<td>Ground Wire Size</td>
<td>#10</td>
<td>#8</td>
<td>#6</td>
</tr>
<tr>
<td>++Delay Fuse or Circuit Breaker Max.</td>
<td>40</td>
<td>50</td>
<td>60</td>
</tr>
</tbody>
</table>

COMPRESSOR

<table>
<thead>
<tr>
<th>Volts</th>
<th>230/208-60-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Load Amps (230/208)</td>
<td>11.2 / 13.0</td>
</tr>
<tr>
<td>Branch Circuit Selection Current</td>
<td>16.7</td>
</tr>
<tr>
<td>Locked Rotor Amps (230/208)</td>
<td>82 / 82</td>
</tr>
</tbody>
</table>

BLOWER MOTOR

Horsepower (ECM Motor)	3/4 Variable Speed		
Volts	230/208-60-1		
Motor Amps (Stage #2 @ Rated CFM)	3.4	4.3	4.4

FLOW CENTER (Based on DORFC-2)

<table>
<thead>
<tr>
<th>Volts</th>
<th>230/208-60-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amps</td>
<td>2.14</td>
</tr>
</tbody>
</table>

DESUPERHEATER PUMP MOTOR

<table>
<thead>
<tr>
<th>Volts</th>
<th>230/208-60-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amps</td>
<td>0.15</td>
</tr>
</tbody>
</table>

+75°C copper wire ++ HACR type circuit breaker
<table>
<thead>
<tr>
<th>Model</th>
<th>GTC36S1</th>
<th>GTC48S1</th>
<th>GTC60S1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.1</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.5</td>
<td>1.15</td>
<td>0.9</td>
</tr>
<tr>
<td>5</td>
<td>1.2</td>
<td>2.77</td>
<td>1.4</td>
</tr>
<tr>
<td>6</td>
<td>1.7</td>
<td>3.92</td>
<td>2.3</td>
</tr>
<tr>
<td>7</td>
<td>2.3</td>
<td>5.31</td>
<td>3.2</td>
</tr>
<tr>
<td>8</td>
<td>3.1</td>
<td>7.15</td>
<td>4.1</td>
</tr>
<tr>
<td>9</td>
<td>4.1</td>
<td>9.46</td>
<td>5.1</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>6.1</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>7.1</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>8.2</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>9.4</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>10.6</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FIGURE 1B – GTB1-A
BLOWER SECTION DIMENSIONS

LOW VOLTAGE ENTRANCE
HIGH VOLTAGE K.O. FOR REMOTE APPLICATIONS ONLY

OPTIONAL SIDE RETURN OPENING ON BOTH SIDES

MIS-2819
FIGURE 1D – ASSEMBLED UPFLOW / COUNTERFLOW APPLICATION DIMENSIONS

<table>
<thead>
<tr>
<th>MODEL</th>
<th>DIM A</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTC36S1</td>
<td>39 7/16"</td>
</tr>
<tr>
<td>GTC48S1</td>
<td>40 15/16"</td>
</tr>
<tr>
<td>GTC60S1</td>
<td>41 15/16"</td>
</tr>
</tbody>
</table>

- Secure sections together using bolt part #M02-035 and washer part #M02-109.

- Air entrance (upflow only).

- Refrigerant connections.

- DESUPERHEATER INLET.

- DESUPERHEATER OUTLET.

- OverFlow drain outlet.

- Main drain outlet.

- Water out.

- Water in.

- Top duct outlet flange.

- Left side.

- Front.

- Right side.
FIGURE 1E – HORIZONTAL APPLICATION DIMENSIONS

Evaporator and Blower in Horizontal Position (Remote Compressor Section)

NOTE:
Requires horizontal drain pan kit
Model GTHZ-1
FIGURE 2A – UPFLOW & COUNTERFLOW DUCTING CONFIGURATIONS

- **Counterflow Position**
 - Blower in Alternate Position
 - 7/8" Line Set
 - Control Panel
 - Secondary Drain
 - Main Drain
 - 3/8" Line Set
 - Evap. Coil
 - Cond. Coil
 - Water In
 - Water Out
 - Desuper. Water In
 - Desuper. Water Out
 - Supply
 - Return
 - Air Filter Required
 - One (1) FR23 (16 x 25 x 1) or field supplied equivalent required for upflow side return installation.
 - Bottom return counterflow filter provision must be field supplied.

- **Upflow Position**
 - Blower in Shipped Position
 - 7/8" Line Set
 - Control Panel
 - Secondary Drain
 - Main Drain
 - 3/8" Line Set
 - Evap. Coil
 - Cond. Coil
 - Water In
 - Water Out
 - Desuper. Water In
 - Desuper. Water Out
 - Supply
 - Return
 - Air Filter Required
 - One (1) FR23 (16 x 25 x 1) or field supplied equivalent required for upflow side return installation.
 - Bottom return counterflow filter provision must be field supplied.
NOTE: Requires horizontal drain pan kit Model GTHZ-1
BLOWER CONVERSION FROM UPFLOW TO COUNTERFLOW OR HORIZONTAL RIGHT DISCHARGE

Following the directions on Figure 3 for counterflow and horizontal right discharge, the indoor blower must be removed and turned over in its mounting configuration.

• Step 1 Remove both front service panels from the GTB1-A.

• Step 2 Remove two screws securing blower at top of GTB1-A (See Figure 3), and slide the blower forward and out of the chassis.

• Step 3 Remove two screws from front fill plate on bottom of GTB1-A, and slide both pieces of metal forward and out of chassis.

• Step 4 Turn blower over and slide into rails of bottom rear of the GTB1-A front fill plate that was removed in Step 3 above.

• Step 5 Remove bottom rear fill plate from bottom front fill plate (discard rear), and resecure front fill plate into unit base and front of blower.

• Step 6 Replace GTB1-A front service doors after making line and control voltage wiring connections.

BLOWER LINE POWER CONNECTION

Power connections for the GTB1-A can be made two different ways.

The first is in “stacked” configurations, the blower can be plugged into an electrical connection from the bottom of the compressor (GTC**S1 Model Unit). This will work for either upflow or counterflow applications. All electrical sizing has been sized to accommodate this.

The second is with “remote” blower (meaning separate from the compressor section). Supplied in the GTB1-A is an adaptor wire harness. On the right-hand side of the GTB1-A chassis is a ½” electrical knockout. This harness can be installed through this knockout with the supplied strain relief into a standard electrical junction box (field supplied). Electrical load sizing is included on the serial plate of the GTB1-A for the required separate branch circuit (See Figure 4).
FIGURE 3 – BLOWER CONFIGURATIONS

1. REMOVE BOTH FRONT PANELS

2. REMOVE (2) SCREWS FROM FRONT FILL PLATE AND SLIDE BACK FILL PLATE OUT OF CABINET
 DISCARD BACK FILL PLATE

3. REMOVE (2) SCREWS AND SLIDE BLOWER OUT OF CABINET

4. ROTATE BLOWER AND SLIDE INTO BOTTOM OFFSETS
 REINSTALL FRONT FILL PLATE

REINSTALL BOTH FRONT PANELS
FIGURE 4 – BLOWER POWER CONNECTIONS

PLUG BLOWER POWER CONNECTOR INTO POWER PLUG PROTRUDING THROUGH CONDENSER BASE FOR BOTH UPFLOW AND COUNTERFLOW STACKED CONFIGURATIONS.

REMOVE SUPPLIED WIRE HARNESS AND STRAIN RELIEF BUSHING FROM BLOWER POWER PLUG. ROUTE WIRE HARNESS THROUGH STRAIN RELIEF AND INTO ELECTRICAL BOX TO MAKE FIELD POWER CONNECTION.

MOUNT FIELD SUPPLIED SINGLE GANG ELECTRICAL BOX ALIGNED OVER HIGH VOLTAGE K.O.
APPLICATION AND LOCATION

GENERAL

The GT Series Geothermal Heat Pumps feature three sections (GTA - Air Coil Section, GTB - Blower Section and GTC - Compressor Section) which cover upflow (bottom, right/left-side return), counterflow and horizontal (left and right-hand discharge) applications.

The individual sections are shipped internally wired, requiring duct connections, thermostat wiring, 230/208 volt AC power wiring, refrigerant line connections and water piping. The equipment covered in this manual is to be installed by trained, experienced service and installation technicians.

These instructions and any instructions packaged with any separate equipment required to make up the entire heat pump system should be carefully read before beginning the installation. Note particularly any tags and/or labels attached to the equipment.

While these instructions are intended as a general recommended guide, they do not in any way supersede any national and/or local codes. Authorities having jurisdiction should be consulted before the installation is made.

LOCATION

The unit may be installed in a basement, closet, or utility room provided adequate service access is ensured.

These units are not approved for outdoor installation and therefore must be installed inside the structure being conditioned. **Do not locate in areas subject to freezing in the winter or subject to sweating in the summer.**

Before setting the unit, consider ease of piping, drain and electrical connections for the unit. Also, for units which will be used with a desuperheater unit, consider the proximity of the unit to the water heater or storage tank. Place the unit on a solid base, preferably concrete, to minimize undesirable noise and vibration. **DO NOT** elevate the base pan on rubber or cork vibration eliminator pads as this will permit the unit base to act like a drum, transmitting objectionable noise.

DUCTWORK

If the unit is to be installed in a closet or utility room which does not have a floor drain, a secondary drain pan under the entire unit is highly recommended.

DO NOT install the unit in such a way that a direct path exists between any return grille and the unit. Rather, insure that the air entering the return grille will make at least one turn before entering the unit or coil. This will reduce possible objectionable compressor and air noise from entering the occupied space.

Design the ductwork according to methods given by the Air Conditioning Contractors of America. When duct runs through unconditioned spaces, it should be insulated with vapor barrier. It is recommended that flexible connections be used to connect the ductwork to the unit in order to keep the noise transmission to a minimum.

APPLICATION

Capacity of the unit for a proposed installation should be based on heat loss calculations made in accordance with methods of the Air Conditioning Contractors of America. The air duct system should be sized and installed in accordance with Standards of the National Fire Protection Association for the Installation of Air Conditioning and Venting systems of Other than Residence Type NFPA No. 90A, and residence Type Warm Air Heating and Air Conditioning Systems, NFPA No. 90B.

WARNING

In applying a duct heater, refer to duct heater installation instructions for minimum clearance to combustible materials, maximum allowed inlet air temperatures, and minimum air volume requirements for KW usage.
TABLE 5
ELECTRICAL HEAT SPECIFICATIONS

<table>
<thead>
<tr>
<th>For Use With</th>
<th>Heater Package</th>
<th>Heater Package</th>
<th>240 Volts</th>
<th>208 Volts</th>
<th>Minimum Circuit Ampacity</th>
<th>Maximum HACR Circuit Breaker</th>
<th>Field Wire Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>All GTC*S1 Models</td>
<td>8604-080</td>
<td>240/208-60-1</td>
<td>5.0</td>
<td>20.8</td>
<td>17,065</td>
<td>3.75</td>
<td>18.0</td>
</tr>
<tr>
<td></td>
<td>8604-081</td>
<td>240/208-60-1</td>
<td>9.8</td>
<td>40.8</td>
<td>33,447</td>
<td>7.35</td>
<td>35.3</td>
</tr>
<tr>
<td></td>
<td>8604-082</td>
<td>240/208-60-1</td>
<td>14.7</td>
<td>61.2</td>
<td>50,171</td>
<td>11.0</td>
<td>52.9</td>
</tr>
<tr>
<td></td>
<td>8604-083</td>
<td>240/208-60-1</td>
<td>19.2</td>
<td>81.7</td>
<td>65,530</td>
<td>14.4</td>
<td>69.2</td>
</tr>
</tbody>
</table>

+ Based upon 75°C copper wire. All wiring must conform to National Electric Code (Latest Edition) and all local codes.

FILTER
This unit must not be operated without a filter. Insufficient airflow due to undersized duct systems or dirty filters can result in nuisance tripping of the high or low pressure controls. Refer to Table 1 for correct airflow and static pressure requirements (see Figure 5).

CONDENSATE DRAIN
Drain lines must be installed according to local plumbing codes. It is not recommended that any condensate drain line be connected to a sewer main.

NOTE: This drain line will contain cold water and must be insulated to avoid droplets of water from compressor on the pipe and dripping on finished floors or the ceiling below the unit.

PIPING ACCESS TO UNIT
Water piping to and from the unit enters the unit cabinet on the left side of the unit. The connection directly at the unit is a special double o-ring fitting with a retainer nut that secures it in place. (It is the same style fitting used for the flow center connection on ground loop applications.)

Note: All double o-ring fittings require “hand tightening only”. Do not use wrench or pliers as retainer nut can be damaged with excessive force.

Various fittings are available so you may then connect to the unit with various materials and methods. These methods include 1” barbed fittings (straight and 90°), 1” MPT (straight and 90°), and 1-1/4” hot fusion fitting (straight only) (see Figure 7).
WIRING INSTRUCTIONS

GENERAL
All wiring must be installed in accordance with the National Electrical Code and local codes. In Canada, all wiring must be installed in accordance with the Canadian Electrical Code and in accordance with the regulations of the authorities having jurisdiction. Power supply voltage must conform to the voltage shown on the unit serial plate. A wiring diagram of the unit is attached to the inside of the electrical cover. The power supply shall be sized and fused according to the specifications supplied. A ground lug is supplied in the control compartment for equipment ground.

The unit rating plate lists a “Maximum Time Delay Fuse” or “HACR” type circuit breaker that is to be used with the equipment. The correct size must be used for proper circuit protection and also to assure that there will be no nuisance tripping due to the momentary high starting current of the compressor motor.

CONTROL CIRCUIT WIRING
The minimum control circuit wiring gauge needed to insure proper operation of all controls in the unit will depend on two factors.
1. The rated VA of the control circuit transformer.
2. The maximum total distance of the control circuit wiring.

Table 6 should be used to determine proper gauge of control circuit wiring required.

For low voltage connections, see Figure #6 on page 21. There are multiple options based upon the type of installation in regards to low voltage electrical connections and what options are selected. These options include a motorized valve or motorized valve with end switch for ground water applications, and optional electric duct heater connections.

NOTE: Review the “lettered triangles” and the corresponding notes on the lower right-hand corner of Figure #6. When options are not used, the wires will need attached to the reference points accordingly.

TABLE 6 CONTROL CIRCUIT WIRING

<table>
<thead>
<tr>
<th>Rated VA of Control Circuit Transformer</th>
<th>Transformer Secondary FLA @ 24V</th>
<th>Maximum Total Distance of Control Circuit Wiring in Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>2.1</td>
<td>20 gauge - 45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18 gauge - 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16 gauge - 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14 gauge - 160</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 gauge - 250</td>
</tr>
</tbody>
</table>

Example: 1. Control Circuit transformer rated at 50 VA
2. Maximum total distance of control circuit wiring 85 feet.

From Table 6 minimum of 16 gauge wire should be used in the control circuit wiring.

WALL THERMOSTAT SELECTION
The wall thermostat selection is important in that it needs to be minimally 2-stage heat and 2-stage cool for applications without electric heat.

For applications with electric heat, the thermostat will need to minimally be 3-stage heat and 2-stage cool. The second bank of electric heat (when equipped) should be wired through a secondary relay for operation only in Emergency Heat Mode, at which point compressor operation should be disabled.
FIGURE 6 THERMOSTAT WIRING

Low Voltage Connection Diagram
3 Stage Heat, 2 Stage Cool Heat Pump Thermostat
Tap Select Control in GTC*S1-D

NOTES:
1.) Points connect when duct heater not used.
2.) Wires not used when motorized valve with end switch is present.
3.) Motorized valve with or without end switch should be used when installing a ground water loop.

Optional Wiring

Optional Valve
Without End Switch
(Use With Water Loop)

Optional Valve
With or Without End Switch
(Use With Water Loop)

Field Installed Wiring

Terminal Strip
in GTB1-A

A Coil Overflow Sensor

Duct Heater

Sensor

Water Loop

Motorized Valve

Water Loop

Optional

3 Stage Heat, 2 Stage Cool

Heat Pump Thermostat

Tap Select Control

in GTC*S1-D

Notes:
1.) Points connect when duct heater not used.
2.) Wires not used when motorized valve with end switch is present.
3.) Motorized valve with or without end switch should be used when installing a ground water loop.

Optional Wiring

Optional Valve
Without End Switch
(Use With Water Loop)

Optional Valve
With or Without End Switch
(Use With Water Loop)

Field Installed Wiring

Terminal Strip
in GTB1-A

A Coil Overflow Sensor

Duct Heater

Sensor

Water Loop

Motorized Valve

Water Loop

Optional

3 Stage Heat, 2 Stage Cool

Heat Pump Thermostat

Tap Select Control

in GTC*S1-D

Notes:
1.) Points connect when duct heater not used.
2.) Wires not used when motorized valve with end switch is present.
3.) Motorized valve with or without end switch should be used when installing a ground water loop.

Optional Wiring

Optional Valve
Without End Switch
(Use With Water Loop)

Optional Valve
With or Without End Switch
(Use With Water Loop)

Field Installed Wiring

Terminal Strip
in GTB1-A

A Coil Overflow Sensor

Duct Heater

Sensor

Water Loop

Motorized Valve

Water Loop

Optional

3 Stage Heat, 2 Stage Cool

Heat Pump Thermostat

Tap Select Control

in GTC*S1-D

Notes:
1.) Points connect when duct heater not used.
2.) Wires not used when motorized valve with end switch is present.
3.) Motorized valve with or without end switch should be used when installing a ground water loop.

Optional Wiring

Optional Valve
Without End Switch
(Use With Water Loop)

Optional Valve
With or Without End Switch
(Use With Water Loop)

Field Installed Wiring

Terminal Strip
in GTB1-A

A Coil Overflow Sensor

Duct Heater

Sensor

Water Loop

Motorized Valve

Water Loop

Optional

3 Stage Heat, 2 Stage Cool

Heat Pump Thermostat

Tap Select Control

in GTC*S1-D

Notes:
1.) Points connect when duct heater not used.
2.) Wires not used when motorized valve with end switch is present.
3.) Motorized valve with or without end switch should be used when installing a ground water loop.

Optional Wiring

Optional Valve
Without End Switch
(Use With Water Loop)

Optional Valve
With or Without End Switch
(Use With Water Loop)

Field Installed Wiring

Terminal Strip
in GTB1-A

A Coil Overflow Sensor

Duct Heater

Sensor

Water Loop

Motorized Valve

Water Loop

Optional

3 Stage Heat, 2 Stage Cool

Heat Pump Thermostat

Tap Select Control

in GTC*S1-D

Notes:
1.) Points connect when duct heater not used.
2.) Wires not used when motorized valve with end switch is present.
3.) Motorized valve with or without end switch should be used when installing a ground water loop.

Optional Wiring

Optional Valve
Without End Switch
(Use With Water Loop)

Optional Valve
With or Without End Switch
(Use With Water Loop)

Field Installed Wiring

Terminal Strip
in GTB1-A

A Coil Overflow Sensor

Duct Heater

Sensor

Water Loop

Motorized Valve

Water Loop

Optional

3 Stage Heat, 2 Stage Cool

Heat Pump Thermostat

Tap Select Control

in GTC*S1-D

Notes:
1.) Points connect when duct heater not used.
2.) Wires not used when motorized valve with end switch is present.
3.) Motorized valve with or without end switch should be used when installing a ground water loop.

Optional Wiring

Optional Valve
Without End Switch
(Use With Water Loop)

Optional Valve
With or Without End Switch
(Use With Water Loop)

Field Installed Wiring

Terminal Strip
in GTB1-A

A Coil Overflow Sensor

Duct Heater

Sensor

Water Loop

Motorized Valve

Water Loop

Optional

3 Stage Heat, 2 Stage Cool

Heat Pump Thermostat

Tap Select Control

in GTC*S1-D

Notes:
1.) Points connect when duct heater not used.
2.) Wires not used when motorized valve with end switch is present.
3.) Motorized valve with or without end switch should be used when installing a ground water loop.

Optional Wiring

Optional Valve
Without End Switch
(Use With Water Loop)

Optional Valve
With or Without End Switch
(Use With Water Loop)

Field Installed Wiring

Terminal Strip
in GTB1-A

A Coil Overflow Sensor

Duct Heater

Sensor

Water Loop

Motorized Valve

Water Loop

Optional

3 Stage Heat, 2 Stage Cool

Heat Pump Thermostat

Tap Select Control

in GTC*S1-D

Notes:
1.) Points connect when duct heater not used.
2.) Wires not used when motorized valve with end switch is present.
3.) Motorized valve with or without end switch should be used when installing a ground water loop.

Optional Wiring

Optional Valve
Without End Switch
(Use With Water Loop)

Optional Valve
With or Without End Switch
(Use With Water Loop)

Field Installed Wiring

Terminal Strip
in GTB1-A

A Coil Overflow Sensor

Duct Heater

Sensor

Water Loop

Motorized Valve

Water Loop

Optional

3 Stage Heat, 2 Stage Cool

Heat Pump Thermostat

Tap Select Control

in GTC*S1-D

Notes:
1.) Points connect when duct heater not used.
2.) Wires not used when motorized valve with end switch is present.
3.) Motorized valve with or without end switch should be used when installing a ground water loop.

Optional Wiring

Optional Valve
Without End Switch
(Use With Water Loop)

Optional Valve
With or Without End Switch
(Use With Water Loop)

Field Installed Wiring

Terminal Strip
in GTB1-A

A Coil Overflow Sensor

Duct Heater

Sensor

Water Loop

Motorized Valve

Water Loop

Optional

3 Stage Heat, 2 Stage Cool

Heat Pump Thermostat

Tap Select Control

in GTC*S1-D

Notes:
1.) Points connect when duct heater not used.
2.) Wires not used when motorized valve with end switch is present.
3.) Motorized valve with or without end switch should be used when installing a ground water loop.

Optional Wiring

Optional Valve
Without End Switch
(Use With Water Loop)

Optional Valve
With or Without End Switch
(Use With Water Loop)

Field Installed Wiring

Terminal Strip
in GTB1-A

A Coil Overflow Sensor

Duct Heater

Sensor

Water Loop

Motorized Valve

Water Loop

Optional

3 Stage Heat, 2 Stage Cool

Heat Pump Thermostat

Tap Select Control

in GTC*S1-D

Notes:
1.) Points connect when duct heater not used.
2.) Wires not used when motorized valve with end switch is present.
3.) Motorized valve with or without end switch should be used when installing a ground water loop.

Optional Wiring

Optional Valve
Without End Switch
(Use With Water Loop)

Optional Valve
With or Without End Switch
(Use With Water Loop)

Field Installed Wiring

Terminal Strip
in GTB1-A

A Coil Overflow Sensor

Duct Heater

Sensor

Water Loop

Motorized Valve

Water Loop

Optional

3 Stage Heat, 2 Stage Cool

Heat Pump Thermostat

Tap Select Control

in GTC*S1-D

Notes:
1.) Points connect when duct heater not used.
2.) Wires not used when motorized valve with end switch is present.
3.) Motorized valve with or without end switch should be used when installing a ground water loop.

Optional Wiring

Optional Valve
Without End Switch
(Use With Water Loop)

Optional Valve
With or Without End Switch
(Use With Water Loop)

Field Installed Wiring

Terminal Strip
in GTB1-A

A Coil Overflow Sensor

Duct Heater

Sensor

Water Loop

Motorized Valve

Water Loop

Optional
NOTE:

Unit shipped from factory with 60 PSIG low pressure switch wired into control circuit and must be rewired to 45 PSIG low pressure switch for ground loop applications. This unit is designed to work on earth coupled water loop systems, however, these systems operate at entering water (without antifreeze) temperature with pressures well below the pressures normally experienced in water well systems.

THE CIRCULATION SYSTEM DESIGN

Equipment room piping design is based on years of experience with earth coupled heat pump systems. The design eliminates most causes of system failure.

The heat pump itself is rarely the cause. Most problems occur because designers and installers forget that a ground loop “earth coupled” heat pump system is NOT like a household plumbing system.

Most household water systems have more than enough water pressure either from the well pump of the municipal water system to overcome the pressure of head loss in 1/2 inch or 3/4 inch household plumbing. A closed loop earth coupled heat pump system, however, is separated from the pressure of the household supply and relies on a small, low wattage pump to circulate the water and antifreeze solution through the earth coupling, heat pump and equipment room components.

The small circulator keeps the operating costs of the system to a minimum. However, the performance of the circulator MUST be closely matched with the pressure of head loss of the entire system in order to provide the required flow through the heat pump. Insufficient flow through the heat exchanger is one of the most common causes of system failure. Proper system piping design and circulator selection will eliminate this problem.
START UP PROCEDURE FOR GROUND LOOP SYSTEM

1. Be sure main power to the unit is OFF at disconnect.

2. Set thermostat system switch to OFF, fan switch to AUTO.

3. Move main power disconnect to ON. Except as required for safety while servicing, **DO NOT OPEN THE UNIT DISCONNECT SWITCH.**

4. Check system airflow for obstructions.
 - A. Move thermostat fan switch to ON. Blower runs.
 - B. Be sure all registers and grilles are open.
 - C. Move thermostat fan switch to AUTO. Blowing should stop.

5. Flush, fill and pressurize the closed loop system per IGSHPA guidelines.

6. Fully open the manual inlet and outlet valves. Start the loop pump module circulator(s) and check for proper operation. If circulator(s) are not operating, turn off power and diagnose the problem.

7. Check fluid flow using a direct reading flow meter or a single water pressure gauge, measure the pressure drop at the pressure/temperature plugs across the water coil. Compare the measurement with flow versus pressure drop table to determine the actual flow rate. If the flow rate is too low, recheck the selection of the loop pump module model for sufficient capacity. If the module selection is correct, there is probably trapped air or a restriction in the piping circuit.

8. Start the unit in cooling mode by moving the thermostat switch to cool. Fan should be set for AUTO.

9. Check the system refrigerant pressures against the cooling refrigerant pressure table in the installation manual for rated water flow and entering water temperatures. If the refrigerant pressures do not match, check for airflow problem then refrigeration system problem.

10. Switch the unit to the heating mode by moving the thermostat switch to heat. Fan should be set for AUTO.

11. Check the refrigerant system pressures against the heating refrigerant pressure table in installation manual. Once again, if they do not match, check for airflow problems and then refrigeration system problems.

NOTE: If a charge problem is determined (high or low):
 - A. Check for possible refrigerant leaks.
 - B. Recover all remaining refrigerant from unit and repair leak.
 - C. Evacuate unit down to 29 inches of vacuum.
 - D. Recharge the unit with refrigerant by weight. This is the only way to insure a proper charge.
FIGURE 8

FIGURE 9
PERFORMANCE MODEL DORFC-1 FLOW CENTER

FIGURE 10
PERFORMANCE MODEL DORFC-2 FLOW CENTER
NOTE:

Unit shipped from factory with 60 PSIG low pressure switch wired into control circuit for ground water applications.

WATER CONNECTIONS

It is very important that an adequate supply of clean, non-corrosive water at the proper pressure be provided before the installation is made. Insufficient water, in the heating mode for example, will cause the low pressure switch to trip, shutting down the heat pump. In assessing the capacity of the water system, it is advisable that the complete water system be evaluated to prevent possible lack of water or water pressure at various household fixtures whenever the heat pump turns on. All plumbing to and from the unit is to be installed in accordance with local plumbing codes. The use of plastic pipe, where permissible, is recommended to prevent electrolytic corrosion of the water pipe. Because of the relatively cold temperatures encountered with well water, it is strongly recommended that the water lines connecting the unit be insulated to prevent water droplets from condensing on the pipe surface.

Refer to piping, Figure 11. Slow open/close with End Switch (2), 24V, provides on/off control of the water flow to the unit. Refer to the wiring diagram for correct hookup of the valve solenoid coil.

Constant Flow Valve (3) provides correct flow of water to the unit regardless of variations in water pressure. Observe the water flow direction indicated by the arrow on the side of the valve body. Following is a table showing which valve is to be installed with which heat pump.

TABLE 7
CONSTANT FLOW VALVES

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Min. Available Pressure PSIG</th>
<th>Flow Rate GPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFV-5</td>
<td>15 (1)</td>
<td>5</td>
</tr>
<tr>
<td>CFV-6</td>
<td>15 (1)</td>
<td>6</td>
</tr>
<tr>
<td>CFV-7</td>
<td>15 (1)</td>
<td>7</td>
</tr>
<tr>
<td>CFV-9</td>
<td>15 (1)</td>
<td>9</td>
</tr>
<tr>
<td>CFV-10</td>
<td>15 (1)</td>
<td>10</td>
</tr>
</tbody>
</table>

(1) The pressure drop through the constant flow valve will vary depending on the available pressure ahead of the valve. Unless minimum of 15 psig is available immediately ahead of the valve, no water will flow.

Strainer (8) installed upstream of water coil inlet to collect foreign material which would clog the flow valve orifice.

The figure shows the use of shutoff valves (4) and (5), on the in and out water lines to permit isolation of the unit from the plumbing system should future service work require this. Globe valves should not be used as shutoff valves because of the excessive pressure drop inherent in the valve design. Instead use gate or ball valves as shutoffs, so as to minimize pressure drop.

Hose bib (6) and (7), and tees should be included to permit acid cleaning the refrigerant-to-water coil should such cleaning be required. See WATER CORROSION.

Hose bib (1) provides access to the system to check water flow through the constant flow valve to insure adequate water flow through the unit. A water meter is used to check the water flow rate.

WELL PUMP SIZING

Strictly speaking, sizing the well pump is the responsibility of the well drilling contractor. It is important, however, that the HVAC contractor be familiar with the factors that determine what size pump will be required. Rule of thumb estimates will invariably lead to under or oversized well pumps. Undersizing the pump will result in inadequate water to the whole plumbing system, but with especially bad results to the heat pump – NO HEAT / NO COOL calls will result. Oversized pumps will short cycle and could cause premature pump motor or switch failures.

The well pump must be capable of supplying enough water and at an adequate pressure to meet competing demands of water fixtures. The well pump must be sized in such a way that three requirements are met:

1. Adequate flow rate in GPM.
2. Adequate pressure at the fixture.
3. Able to meet the above from the depth of the well-feet of lift.
The pressure requirements put on the pump are directly affected by the diameter of pipe being used, as well as, by the water flow rate through the pipe. The worksheet included in Manual 2100-078 should guarantee that the well pump has enough capacity. It should also ensure that the piping is not undersized, which would create too much pressure due to friction loss. High pressure losses due to undersized pipe will reduce efficiency and require larger pumps and could also create water noise problems.

FIGURE 11
WATER CONNECTION COMPONENTS

NOTE:
Shown with Optional Top Kit for Remote Condenser Applications

See descriptions for these reference numbers on Page 25.
SYSTEM START UP PROCEDURE FOR GROUND WATER APPLICATIONS

1. Be sure main power to the unit is OFF at disconnect.
2. Set thermostat system switch to OFF, fan switch to AUTO.
3. Move main power disconnect to ON. Except as required for safety while servicing – DO NOT OPEN THE UNIT DISCONNECT SWITCH.
4. Check system airflow for obstructions.
 A. Move thermostat fan switch to ON. Blower runs.
 B. Be sure all registers and grilles are open.
 C. Move thermostat fan switch to AUTO. Blower should stop.
5. Fully open the manual inlet and outlet valves.
6. Check water flow.
 A. Connect a water flow meter to the drain cock between the constant flow valve and the solenoid valve. Run a hose from the flow meter to a drain or sink. Open the drain cock.
 B. Check the water flow rate through constant flow valve to be sure it is the same as the unit is rated for. (Example: 6 GPM for a GTC36S1.)
 C. When water flow is okay, close drain cock and remove the water flow meter. The unit is now ready to start.
7. Start the unit in cooling mode by moving the thermostat switch to cool. Fan should be set for AUTO.
 A. Check to see the solenoid valve opened.
8. Check the system refrigerant pressures against the cooling refrigerant pressure table in the installation manual for rated water flow and entering water temperatures. If the refrigerant pressures do not match, check for airflow problem and then refrigeration system problem.
9. Switch the unit to the heat mode by moving the thermostat switch to heat. Fan should be set for AUTO.
 A. Check to see the solenoid valve opened again.
10. Check the refrigerant system pressures against the heating refrigerant pressure table in installation manual. Once again, if they do not match, check for airflow problems and then refrigeration system problems.

NOTE: If a charge problem is determined (high or low):
 A. Check for possible refrigerant loss.
 B. Discharge all remaining refrigerant from unit.
 C. Evacuate unit down to 29 inches of vacuum.
 D. Recharge the unit with refrigerant by weight. This is the only way to insure proper charge.

WATER CORROSION

Two concerns will immediately come to light when considering a water source heat pump, whether for ground water or for a ground loop application: Will there be enough water? And, how will the water quality affect the system?

Water quantity is an important consideration and one which is easily determined. The well driller must perform a pump down test on the well according to methods described by the National Well Water Association. This test, if performed correctly, will provide information on the rate of flow and on the capacity of the well. It is important to consider the overall capacity of the well when thinking about a water source heat pump because the heat pump may be required to run for extended periods of time.

The second concern, about water quality, is equally important. Generally speaking, if the water is not offensive for drinking purposes, it should pose no problem for the heat pump. The well driller or local water softening company can perform tests which will determine the chemical properties of the well water.

Water quality problems will show up in the heat pump in one or more of the following ways:

1. Decrease in water flow through the unit.
2. Decreased heat transfer of the water coil (entering to leaving water temperature difference is less).

There are four main water quality problems associated with ground water. These are:

1. Biological Growth. This is the growth of microscopic organisms in the water and will show up as a slimy deposit throughout the water system. Shock treatment of the well is usually required and this is best left up to the well driller. The treatment consists of injecting chlorine into the well casing and flushing the system until all growth is removed.

2. Suspended Particles in the Water. Filtering will usually remove most suspended particles (fine sand, small gravel) from the water. The problem with suspended particles in the water is that it will erode metal parts, pumps, heat transfer coils, etc. So long as the filter is cleaned and periodically maintained, suspended particles should pose no serious problem. Consult with your well driller.

3. Corrosion of Metal. Corrosion of metal parts results from either highly corrosive water (acid water, generally not the case with ground water) or galvanic reaction between dissimilar metals in the presence of water. By using plastic plumbing or dielectric unions, galvanic reaction is eliminated. The use of corrosion resistant materials such as the Cupronickel coil through the water system will reduce corrosion problems significantly.
4. **Scale Formation.** Of all the water problems, the formation of scale by ground water is by far the most common. Usually this scale is due to the formation of calcium carbonate but magnesium carbonate or calcium sulfate may also be present. Carbon dioxide gas (CO$_2$), the carbonate of calcium and magnesium carbonate, is very soluble in water. It will remain dissolved in the water until some outside factor upsets the balance. This outside influence may be a large change in water temperature or pressure. When this happens, enough carbon dioxide gas combines with dissolved calcium or magnesium in the water and falls out of solution until a new balance is reached. The change in temperature that this heat pump produces is usually not high enough to cause the dissolved gas to fall out of solution. Likewise, if pressure drops are kept to a reasonable level, no precipitation of carbon dioxide should occur.

REMEDIES OF WATER PROBLEMS

Water Treatment. Water treatment can usually be economically justified for water loop systems. However, because of the large amounts of water involved with a ground water system, water treatment is generally too expensive.

Acid Cleaning the Water Coil or Heat Pump Recovery Unit. If scaling of the coil is strongly suspected, the coil can be cleaned up with a solution of Phosphoric Acid (food grade acid). Follow the manufacturer’s directions for mixing, use, etc. Refer to the “Cleaning Water Coil”, Figure 12. The acid solution can be introduced into the heat pump coil through the hose bib A. Be sure the isolation valves are closed to prevent contamination of the rest of the system by the coil. The acid should be pumped from a bucket into the hose bib and returned to the bucket through the other hose bib B. Follow the manufacturer’s directions for the product used as to how long the solution is to be circulated, but it is usually circulated for a period of several hours.

LAKE AND POND INSTALLATIONS

Lakes and ponds can provide a low cost source of water for heating and cooling with a ground water heat pump. Direct usage of the water without some filtration is not recommended as algae and turbid water can foul the water to refrigerant heat exchanger. Instead, there have been very good results using a dry well dug next to the water line or edge. Normal procedure in installing a dry well is to backhoe a 15 to 20 foot hole adjacent to the body of water (set backhoe as close to the water’s edge as possible). Once excavated, a perforated plastic casing should be installed with gravel backfill placed around the casing. The gravel bed should provide adequate filtration of the water to allow good performance of the ground water heat pump.

The following is a list of recommendations to follow when installing this type of system:

A. A lake or pond should be at least 1 acre (40,000 square feet) in surface area for each 50,000 BTUs of ground water heat pump capacity or have 2 times the cubic feet size of the dwelling that you are trying to heat (includes basement if heated).

B. The average water depth should be at least 4 feet and there should be an area where the water depth is at least 12 to 15 feet deep.

FIGURE 12

CLEANING WATER COIL

![Diagram of a heat pump system with labels for HOSE BIB (A), HOSE BIB (B), PUMP, and MIS-2836.]
C. If possible, use a submersible pump suspended in the dry well casing. Jet pumps and other types of suction pumps normally consume more electrical energy than similarly sized submersible pumps. Pipe the unit the same as a water well system.

D. Size the pump to provide necessary GPM for the ground water heat pump. A 12 GPM or greater water flow rate is required on all models when used on this type system.

E. A pressure tank should be installed in dwelling to be heated adjacent to the ground water heat pump. A pressure switch should be installed at the tank for pump control.

F. All plumbing should be carefully sized to compensate for friction losses, etc., particularly if the pond or lake is over 200 feet from the dwelling to be heated or cooled.

G. Keep all water lines below low water level and below the frost line.

H. Most installers use 4-inch field tile (rigid plastic or corrugated) for water return to the lake or pond.

I. The drain line discharge should be located at least 100 feet from the dry well location.

J. The drain line should be installed with a slope of 2 inches per 10 feet of run to provide complete drainage of the line when the ground water heat pump is not operating. This gradient should also help prevent freezing of the discharge where the pipe terminates above the frost line.

K. Locate the discharge high enough above high water level so the water will not back up and freeze inside the drain pipe.

L. Where the local conditions prevent the use of a gravity drainage system to a lake or pond, you can instead run standard plastic piping out into the pond below the frost and low water level.

WARNING

Thin ice may result in the vicinity of the discharge line.

For complete information on water well systems and lake and pond applications, refer to Manual 2100-078 available from your distributor.
DESCRIPTION

The system is designed to heat domestic water using heat recovered from a water source unit’s hot discharge gas.

LOCATION

Because of potential damage from freezing or condensation, the unit must be located in a conditioned space, therefore the unit must be installed indoors. Locate the storage tank as close to the geothermal heat pump and pump module as the installation permits. Keep in mind that water lines should be a maximum of 25 feet long measured one way. Also, the vertical lift should not exceed 20 feet. This is to keep pressure and heat losses to a minimum.

ELECTRICAL CONNECTION

The Desuperheater:

The desuperheater logic control with the remote thermal sensors are built already hard-wired into the unit control panel. 208/230-60-1 power for the desuperheater pump is supplied with the same power as the compressor. The 24 volt signals needed are also tied in with the compressor call signals.

WARNING

Never alter or plug factory installed pressure relief valve on water heater or auxiliary tank.

INSTALLATION PROCEDURE – GENERAL

Before beginning the installation, turn off all power supplies to the water heater and unit, and shut off the main water supply line.

TWO TANK – In order to realize the maximum energy savings from the heat recovery system, it is recommended that a second water storage tank be installed in addition to the main hot water heater. Fossil fuel fired water heaters must be a two-tank installation.

Tanks specifically intended for hot water storage are available from water heater manufacturers (solar hot water storage tanks). A well insulated electric water heater without the electric heating elements will also make a suitable storage tank.

The size of storage tank should be as large as space and economy permit but in no event should it be less than one-half of the daily water requirements for the occupants. As a guide in estimating the daily family water requirements, The Department of Energy recommends a figure of 16.07 gallons of hot water per day per individual. For example, a family of four would require 64.3 gallons per day (4 x 16.07).

ONE TANK – The single hot water tank may be a new hot water heater (sized to 100% of daily water requirements) or the existing water heater in the case of a retrofit installation. The existing water heater should be drained and flushed to remove all loose sediment. This sediment could damage the circulating pump. The bottom heating element should be disconnected.

NOTE: Make sure water heater thermostats are set below 125° on One Tank Unit.

WATER PIPING – All water piping must adhere to all state and local codes. Refer to piping diagrams for recommended one and two tank installations. Piping connections are 1/2 inch nominal copper plumbing. A cleanable “Y” type strainer should also be included to collect any sediment.
OPERATION OF THE HEAT RECOVERY UNIT

The pump module is a very simple device containing basic controls and a circulating pump. Heat is transferred from the hot refrigerant (discharge gas) to the cool water.

The operation of the Desuperheater Pump Module is controlled first by the operation of the Geothermal Heat Pump and secondly by internal controls within the Pump Module. A low voltage signal from Thermostat “Y” is connected to the desuperheater control board and acts as the primary on/off switch for the circulating pump.

Also connected to this board is a temperature overlimit device which shuts down the desuperheater once inlet water has exceeded 125° so the water cannot create a scald condition.

There are also two (2) thermistor sensors connected to the control board. These thermistors are measuring and controlling to ensure there is a positive heat differential across the water being circulated. When operating in Part Load Condition, there are certain conditions (Ground Loop Temperatures versus Hot Water Temperatures) that potential exists where heat could transfer from the hot water into the refrigeration system instead of the refrigeration system into the hot water. Through the control board logic, these thermistors ensure there is at least 2° positive differential between entering/leaving water temperatures and will shut down the pump accordingly.

START UP AND CHECK OUT

Be sure all shut off valves are open and all power supplies are on. Open a hot water faucet to permit any air to bleed from the plumbing.

NOTE: The inherent design of this pump for maximum efficiency means this pump is not self-priming. It is imperative to check that the air has been adequately bled from the system. There is a bleed-port built into the pump module that can be utilized after the system water has been fully restored. The bleed port is located directly above the pump in the GTC compressor unit.

Turn ON the air conditioning system and verify the circulating pump will operate. Feel the “Water to Unit” and “Water from Water Heater” tubes for noticeable difference in temperature. Turn OFF the system and verify that the circulating pump stops.

NOTE: When checking the refrigerant operating pressures of the ground source heat pump. The desuperheater must be turned off. With the desuperheater operating a wide variance in pressures can result, giving the service technician the indication there is a charge problem when the unit is operating correctly.

MAINTENANCE

CLEANING THE HEAT EXCHANGER – If scaling of the coil is strongly suspected, the coil can be cleaned with a solution of phosphoric acid (food grade acid). Follow the manufacturer’s directions for the proper mixing and use of cleaning agent.
NOTES: DO NOT OPERATE PUMP WITHOUT WATER LINES CONNECTED AND WATER IN SYSTEM WITH SHUT OFF VALVES OPEN.

WHEN WATER STORAGE IS INSTALLED IN VERTICAL POSITION, PIPING TO "IN" SIDE OF PUMP MUST BE INSTALLED AT BOTTOM AS SHOWN.

ALL PLUMBING MUST CONFORM TO LOCAL CODES.

WATER SOURCE UNIT

WATER HEATER FACTORY INSTALLED HIGH PRESSURE RELIEF VALVE

EXISTING WATER HEATER L.P., GAS, OIL, ELECTRIC

WATER HEATER FACTORY INSTALLED HIGH PRESSURE RELIEF VALVE

SHUTOFF VALVES

DRAIN

OPTIONAL CHECK VALVE (PER CODES)

HIGH PRESSURE RELIEF VALVE

COLD WATER IN

HOT WATER TO HOUSE

STRAINER

DRAIN

OUT

IN

WATER SOURCE UNIT

MS-2831
FIGURE 15B – DESUPERHEATER DUAL TANK SYSTEM

- **Existing Water Heater**: L.P., Gas, Oil, Electric
- **Water Tank**: Factory Installed High Pressure Relief Valves
- **Cold Water In**: Optional Bypass Loop
- **Hot Water To House**: Optional Check Valve (Per Codes)
- **Drain**: Shutoff Valves
- **In**: Additional Hot Water Storage Tank, Not Electrically Connected
- **Out**: Water Source Unit
- **Strainer**: Drain
- **MIS-2832**: Desuperheater Pump Shipped Disconnected from Factory, Connect 3 Pin Power Plug to Control Panel

NOTES: Do not operate pump without water lines connected and water in system with shut off valves open.

All plumbing must conform to local codes.

When water storage is installed in vertical position, piping to "In" side of pump must be installed at bottom as shown.

Additional hot water storage tank not electrically connected.
DESUPERHEATER CONTROL BOARD SEQUENCE OF OPERATION

The desuperheating control board will make a determination whether or not to energize the pump relay inclusive on the control board.

A. It will constantly monitor inputs from two temperature sensors, Inlet & Outlet water sensors.

B. It will constantly monitor the Y signal.

C. Upon acknowledgment of Y signal, and following two minutes, the control board will energize the pump relay.

D. After 1½ minutes, based on temperature difference between Outlet & Inlet sensors, and the presence of Y signal, the following will take place:

1.) If temperature difference is greater than 3°F, then the control will continue to energize pump relay.
2.) If temperature difference is less than 3°F, then the control will de-energize the pump relay.
3.) The control will next wait for 10 minutes before repeating Step #1 (above).

E. The Over Temperature Limit Switch is placed in series with the line voltage. Therefore, continuity between L of line voltage and L of pump output is forced broken when the Over Temperature Limit Switch opens (see Wiring Diagram).

F. The 3-amp fuse is put in series with the R connection to the board. Whenever the fuse is blown, the control will lose power and consequently, the relay will disengage.

Figure 16
THERMISTOR

TEMPERATURE F VS RESISTANCE R OF TEMPERATURE SENSOR

<table>
<thead>
<tr>
<th>F</th>
<th>R</th>
<th>F</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>53.0</td>
<td>19374</td>
<td>89.0</td>
<td>7507</td>
</tr>
<tr>
<td>52.0</td>
<td>18867</td>
<td>90.0</td>
<td>7334</td>
</tr>
<tr>
<td>53.0</td>
<td>18375</td>
<td>91.0</td>
<td>7165</td>
</tr>
<tr>
<td>54.0</td>
<td>17989</td>
<td>92.0</td>
<td>7000</td>
</tr>
<tr>
<td>55.0</td>
<td>17434</td>
<td>93.0</td>
<td>6840</td>
</tr>
<tr>
<td>56.0</td>
<td>16984</td>
<td>94.0</td>
<td>6683</td>
</tr>
<tr>
<td>57.0</td>
<td>16547</td>
<td>95.0</td>
<td>6531</td>
</tr>
<tr>
<td>58.0</td>
<td>16122</td>
<td>96.0</td>
<td>6383</td>
</tr>
<tr>
<td>59.0</td>
<td>15710</td>
<td>97.0</td>
<td>6239</td>
</tr>
<tr>
<td>60.0</td>
<td>15310</td>
<td>98.0</td>
<td>6098</td>
</tr>
<tr>
<td>61.0</td>
<td>14921</td>
<td>99.0</td>
<td>5961</td>
</tr>
<tr>
<td>62.0</td>
<td>14544</td>
<td>100.0</td>
<td>5827</td>
</tr>
<tr>
<td>63.0</td>
<td>14177</td>
<td>101.0</td>
<td>5697</td>
</tr>
<tr>
<td>64.0</td>
<td>13820</td>
<td>102.0</td>
<td>5570</td>
</tr>
<tr>
<td>65.0</td>
<td>13474</td>
<td>103.0</td>
<td>5446</td>
</tr>
<tr>
<td>66.0</td>
<td>13137</td>
<td>104.0</td>
<td>5326</td>
</tr>
<tr>
<td>67.0</td>
<td>12810</td>
<td>105.0</td>
<td>5208</td>
</tr>
<tr>
<td>68.0</td>
<td>12492</td>
<td>106.0</td>
<td>5094</td>
</tr>
<tr>
<td>69.0</td>
<td>12183</td>
<td>107.0</td>
<td>4982</td>
</tr>
<tr>
<td>70.0</td>
<td>11883</td>
<td>108.0</td>
<td>4873</td>
</tr>
<tr>
<td>71.0</td>
<td>11591</td>
<td>109.0</td>
<td>4767</td>
</tr>
<tr>
<td>72.0</td>
<td>11307</td>
<td>110.0</td>
<td>4663</td>
</tr>
<tr>
<td>73.0</td>
<td>11031</td>
<td>111.0</td>
<td>4562</td>
</tr>
<tr>
<td>74.0</td>
<td>10762</td>
<td>112.0</td>
<td>4464</td>
</tr>
<tr>
<td>75.0</td>
<td>10501</td>
<td>113.0</td>
<td>4367</td>
</tr>
<tr>
<td>76.0</td>
<td>10247</td>
<td>114.0</td>
<td>4274</td>
</tr>
<tr>
<td>77.0</td>
<td>10000</td>
<td>115.0</td>
<td>4182</td>
</tr>
<tr>
<td>78.0</td>
<td>9760</td>
<td>116.0</td>
<td>4093</td>
</tr>
<tr>
<td>79.0</td>
<td>9526</td>
<td>117.0</td>
<td>4006</td>
</tr>
<tr>
<td>80.0</td>
<td>9299</td>
<td>118.0</td>
<td>3921</td>
</tr>
<tr>
<td>81.0</td>
<td>9077</td>
<td>119.0</td>
<td>3838</td>
</tr>
<tr>
<td>82.0</td>
<td>8862</td>
<td>120.0</td>
<td>3757</td>
</tr>
<tr>
<td>83.0</td>
<td>8653</td>
<td>121.0</td>
<td>3678</td>
</tr>
<tr>
<td>84.0</td>
<td>8449</td>
<td>122.0</td>
<td>3601</td>
</tr>
<tr>
<td>85.0</td>
<td>8250</td>
<td>123.0</td>
<td>3526</td>
</tr>
<tr>
<td>86.0</td>
<td>8057</td>
<td>124.0</td>
<td>3452</td>
</tr>
<tr>
<td>87.0</td>
<td>7869</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88.0</td>
<td>7686</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SEQUENCE OF OPERATION

BLOWER

Blower functions are all controlled through 24 VAC input signals from the control thermostat and 208/230 VAC being supplied to the motor continuously.

The installer must be sure to configure the tap select control board (located in blower compartment) based upon the specific model application. By default, the tap select control (located in the blower compartment), is shipped from the factory to operate at the airflow ranges for the GTC60S1 model. Please see Wiring Diagram (Page 48) which details the required dip switch changes required between models.

NOTE 1: On a call from only “G” from the thermostat (call for manual fan), the blower will operate at a significantly reduced airflow rate to allow for air circulation and filtration, but at reduced power consumption and sound levels.

NOTE 2: There are ±10% adjustments that are enabled on the tap select control that will allow you to increase or decrease the air volume plus or minus 10%. Increasing the air volume may help with some slightly increased capacity and increased duct velocity if there is an air distribution issue. Decreasing the air volume will help improve latent capacity in a humid application, and will help to lower air distribution sound levels. Please see Wiring Diagram (Page 48) which details the required dip switch changes for this adjustment.

PART LOAD HEATING (No Electric Heat)

When thermostat system is placed in HEAT, the reversing valve solenoid is no longer energized. On a call for part load heating, the thermostat completes a call from “R” to “Y1” sending the signal to both the Tap Select Control located in the blower compartment, and to the Geothermal Logic Control located in the compressor section. The tap select control uses the input signal versus the motor program, and the dip switch settings to determine the proper air volume rate to operate. The Geothermal Logic Control verifies that the High Pressure Switch, the Low Pressure Switch, and the Freeze Stat controls are all in the “closed” position. It then energizes the “A” terminal output to start the flow center (Ground Loop Applications) or energizes the water solenoid (Ground Water/Water Loop Applications.) Following 10 seconds of the “A” terminal energization, the compressor contactor is energized.

FULL LOAD HEATING

The system should already be in Part Load Heating prior to Full Load Heating operation. Additionally what happens, the thermostat completes a circuit from “R” to “Y2”. This sends a signal to the Geothermal Logic Control to drive the blower to the proper CFM.

SUPPLEMENTARY ELECTRIC HEAT

The system should already be in FULL LOAD HEATING operation (above). The thermostat completes a circuit from “R” to “W2”, which energizes the first bank of electric heat.

GEOTHERMAL LOGIC CONTROL

If the controller operates in normal mode, the green Status LED blinks. This indicates that 24 volt power is applied to the board and the controller is running in normal operation.

On initial power up and call for compressor operation, a 5-minute delay + a random start delay of 0 to 60-second is applied. After the random delay, the compressor relay is energized (Terminals CC & CCG). When the “Y” input opens the compressor de-energizes.

Water Solenoid – When “Y” signal is sent to Geothermal Logic Control, the water solenoid output “A” terminal will energize 10 seconds prior to “CC” output that starts compressor.

Anti-Short Cycle Timer – After compressor shutdown, or power disruption, a 5-minute timer is applied and prevents the compressor from operating.

FULL LOAD COOLING

The system should already be in Part Load Cooling prior to Full Load Cooling being energized. Additionally what happens, the thermostat completes a circuit from “R” to “Y2”. This sends a signal to both the staging solenoid on the side of the compressor, and sends a signal to the Blower Tap Select Control in the blower compartment to drive the blower to the proper CFM.
HIGH PRESSURE SWITCH
(TERMINALS HP1 & HP2) Circuit will be proved as “closed” prior to energizing “A” or “CC” terminals. If pressure switch opens, compressor will go into soft lockout mode and compressor operation will be terminated; green fault light illuminated. Logic control will then go through 5-minute delay on break + random start sequence. If no fault found on next run cycle, compressor will continue operation. If fault reoccurs, hard lockout occurs, and fault signal is sent to “L” terminal.

LOW PRESSURE SWITCH
(TERMINALS LP1 & LP2) Circuit will be proved as “closed” prior to energizing “A” or “CC” terminals. The conditions of the LP terminals will then be ignored for the first 90 seconds after a demand for compressor operation. Following this 90 second period, if pressure switch opens, compressor will go into soft lockout mode and compressor operation will be terminated; orange fault light illuminated. The control board will then go through a 5-minute delay on break + random start sequence. If no fault found on next run cycle, compressor will continue operation. If fault reoccurs, hard lockout occurs, and fault signal is sent to “L” terminal.

FREEZE STAT (Optional Field Add-On Option)
(TERMINALS FS & FS2) Circuit will be proved as “closed” prior to energizing “A” or “CC” terminals. If freezestat switch opens, compressor will go into soft lockout mode and compressor operation will be terminated; red fault light illuminated. Logic control will then go through 5-minute delay on break + random start sequence. If no fault found on next run cycle, compressor will continue operation. If fault reoccurs, hard lockout occurs, and fault signal is sent to “L” terminal.

NOTE: Jumper wire is factory installed.

CONDENSATE OVERFLOW
(Terminals CO & CO2) This input operates when the water level in the condensation pan rises and completes a signal across the terminals of the terminal block located in the indoor coil drain pan; yellow fault light illuminates. If fault clears, the logic control will go through 5-minute delay + random start. If fault reoccurs, or didn’t clear the first time after 30 seconds, the control will go into hard lockout, and will energize the “L” output signal.

UNDER & OVER VOLTAGE PROTECTION
When an under or over voltage condition exists, the controller locks out the unit. When condition clears, the controller automatically releases the unit to normal operation and the compressor restarts after the random start and anti-short cycle timings are met. The under & over voltage protection starts at plus or minus 20% from nominal voltage and returns to operation at plus or minus 10% from nominal voltage. All four (4) LED fault lights will flash when an under or over voltage condition occurs. The over voltage protection can be disabled by removing the O/V jumper.

INTELLIGENT RESET
The Geothermal Logic Control has an intelligent reset feature after a safety control is activated. The controller locks out the unit for 5 minutes, at the end of this period, the controller checks to verify that all faults have been cleared. If faults have been cleared, the controller restarts the unit. If a second fault occurs, the controller will lock out the unit until the unit is manually reset by breaking “Y” signal from thermostat. The last fault will be kept in memory after a full lockout; this is only cleared by cycling the power.

ALARM OUTPUT
The “L” terminal has 24 volts applied when a hard lockout occurs. This can be used to drive a fault light or a low voltage relay.

PRESSURE SERVICE PORTS
High and low pressure service ports are installed on all units so that the system operating pressures can be observed. Pressure tables can be found later in the manual covering all models. It is imperative to match the correct pressure table to the unit by model number.

SYSTEM START-UP
Step 1 – Close disconnect switch(es) and set the thermostat to cool and the temperature to the highest setting.
Step 2 – Check for proper airflow across the indoor coil.
Step 3 – Connect the service gauges and allow the unit to run for at least 10 minutes or until pressures are stable. Check pressures to the system pressure table attached to the unit service panel.
FIGURE 17 — COMPONENT LOCATION

- Water coil
- Low pressure switches
- Reversing valve
- High pressure switch
- Expansion valve
- Filter/drier
- Pump
- Compressor
- Desuperheater coil
- Low voltage
- Unit high voltage
- Pump module high voltage
- MIS-2838

FIGURE 18 — CONTROL PANEL

- Terminal strip
- Desuperheater control board
- Geothermal logic control
- Compressor contactor
- Ground terminals
- Pump module power connection
- Compressor capacitor
- MIS-2837
FIGURE 20

PRESSURE TABLES

FULL LOAD COOLING — Fluid Temperature Entering Water Coil °F

<table>
<thead>
<tr>
<th>Model</th>
<th>Return Air Temperature</th>
<th>Pressure</th>
<th>30°F</th>
<th>35°F</th>
<th>40°F</th>
<th>45°F</th>
<th>50°F</th>
<th>55°F</th>
<th>60°F</th>
<th>65°F</th>
<th>70°F</th>
<th>75°F</th>
<th>80°F</th>
<th>85°F</th>
<th>90°F</th>
<th>95°F</th>
<th>100°F</th>
<th>105°F</th>
<th>110°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTC36S1</td>
<td>Low Side</td>
<td>75°F DB</td>
<td>123</td>
<td>124</td>
<td>124</td>
<td>125</td>
<td>126</td>
<td>126</td>
<td>127</td>
<td>127</td>
<td>128</td>
<td>129</td>
<td>130</td>
<td>131</td>
<td>131</td>
<td>132</td>
<td>132</td>
<td>133</td>
<td></td>
</tr>
<tr>
<td>GTC48S1</td>
<td>Low Side</td>
<td>80°F DB</td>
<td>132</td>
<td>132</td>
<td>133</td>
<td>134</td>
<td>137</td>
<td>135</td>
<td>136</td>
<td>136</td>
<td>137</td>
<td>138</td>
<td>139</td>
<td>140</td>
<td>140</td>
<td>141</td>
<td>142</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GTC60S1</td>
<td>Low Side</td>
<td>85°F DB</td>
<td>142</td>
<td>142</td>
<td>143</td>
<td>144</td>
<td>145</td>
<td>146</td>
<td>147</td>
<td>147</td>
<td>147</td>
<td>148</td>
<td>149</td>
<td>150</td>
<td>151</td>
<td>152</td>
<td>152</td>
<td>153</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Return Air Temperature</th>
<th>Pressure</th>
<th>30°F</th>
<th>35°F</th>
<th>40°F</th>
<th>45°F</th>
<th>50°F</th>
<th>55°F</th>
<th>60°F</th>
<th>65°F</th>
<th>70°F</th>
<th>75°F</th>
<th>80°F</th>
<th>85°F</th>
<th>90°F</th>
<th>95°F</th>
<th>100°F</th>
<th>105°F</th>
<th>110°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTC36S1</td>
<td>Low Side</td>
<td>75°F DB</td>
<td>124</td>
<td>125</td>
<td>126</td>
<td>126</td>
<td>127</td>
<td>127</td>
<td>128</td>
<td>129</td>
<td>130</td>
<td>131</td>
<td>131</td>
<td>132</td>
<td>132</td>
<td>133</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GTC48S1</td>
<td>Low Side</td>
<td>80°F DB</td>
<td>132</td>
<td>133</td>
<td>134</td>
<td>135</td>
<td>136</td>
<td>137</td>
<td>138</td>
<td>138</td>
<td>139</td>
<td>140</td>
<td>142</td>
<td>142</td>
<td>142</td>
<td>142</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GTC60S1</td>
<td>Low Side</td>
<td>85°F DB</td>
<td>142</td>
<td>143</td>
<td>143</td>
<td>144</td>
<td>145</td>
<td>146</td>
<td>147</td>
<td>147</td>
<td>148</td>
<td>149</td>
<td>150</td>
<td>151</td>
<td>152</td>
<td>152</td>
<td>153</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FULL LOAD HEATING — Fluid Temperature Entering Water Coil °F

<table>
<thead>
<tr>
<th>Model</th>
<th>Return Air Temperature</th>
<th>Pressure</th>
<th>5°F</th>
<th>10°F</th>
<th>15°F</th>
<th>20°F</th>
<th>25°F</th>
<th>30°F</th>
<th>35°F</th>
<th>40°F</th>
<th>45°F</th>
<th>50°F</th>
<th>55°F</th>
<th>60°F</th>
<th>65°F</th>
<th>70°F</th>
<th>75°F</th>
<th>80°F</th>
<th>85°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTC36S1</td>
<td>Low Side</td>
<td>70°F DB</td>
<td>45</td>
<td>52</td>
<td>59</td>
<td>66</td>
<td>72</td>
<td>79</td>
<td>86</td>
<td>92</td>
<td>99</td>
<td>106</td>
<td>117</td>
<td>129</td>
<td>140</td>
<td>151</td>
<td>162</td>
<td>174</td>
<td>185</td>
</tr>
<tr>
<td>GTC48S1</td>
<td>Low Side</td>
<td>70°F DB</td>
<td>36</td>
<td>44</td>
<td>52</td>
<td>60</td>
<td>68</td>
<td>76</td>
<td>84</td>
<td>92</td>
<td>100</td>
<td>108</td>
<td>119</td>
<td>129</td>
<td>140</td>
<td>150</td>
<td>161</td>
<td>171</td>
<td>182</td>
</tr>
<tr>
<td>GTC60S1</td>
<td>Low Side</td>
<td>70°F DB</td>
<td>38</td>
<td>46</td>
<td>54</td>
<td>62</td>
<td>70</td>
<td>78</td>
<td>86</td>
<td>94</td>
<td>102</td>
<td>110</td>
<td>128</td>
<td>136</td>
<td>144</td>
<td>151</td>
<td>162</td>
<td>174</td>
<td>185</td>
</tr>
</tbody>
</table>

PART LOAD COOLING — Fluid Temperature Entering Water Coil °F

<table>
<thead>
<tr>
<th>Model</th>
<th>Return Air Temperature</th>
<th>Pressure</th>
<th>30°F</th>
<th>35°F</th>
<th>40°F</th>
<th>45°F</th>
<th>50°F</th>
<th>55°F</th>
<th>60°F</th>
<th>65°F</th>
<th>70°F</th>
<th>75°F</th>
<th>80°F</th>
<th>85°F</th>
<th>90°F</th>
<th>95°F</th>
<th>100°F</th>
<th>105°F</th>
<th>110°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTC36S1</td>
<td>Low Side</td>
<td>80°F DB</td>
<td>122</td>
<td>123</td>
<td>124</td>
<td>125</td>
<td>126</td>
<td>127</td>
<td>128</td>
<td>129</td>
<td>130</td>
<td>131</td>
<td>132</td>
<td>133</td>
<td>133</td>
<td>134</td>
<td>135</td>
<td>136</td>
<td>136</td>
</tr>
<tr>
<td>GTC48S1</td>
<td>Low Side</td>
<td>80°F DB</td>
<td>141</td>
<td>142</td>
<td>143</td>
<td>144</td>
<td>145</td>
<td>146</td>
<td>147</td>
<td>148</td>
<td>149</td>
<td>151</td>
<td>152</td>
<td>153</td>
<td>154</td>
<td>155</td>
<td>156</td>
<td>157</td>
<td>158</td>
</tr>
<tr>
<td>GTC60S1</td>
<td>Low Side</td>
<td>80°F DB</td>
<td>128</td>
<td>129</td>
<td>130</td>
<td>131</td>
<td>131</td>
<td>134</td>
<td>135</td>
<td>136</td>
<td>136</td>
<td>137</td>
<td>137</td>
<td>138</td>
<td>139</td>
<td>140</td>
<td>141</td>
<td>142</td>
<td>143</td>
</tr>
</tbody>
</table>

PART LOAD HEATING — Fluid Temperature Entering Water Coil °F

<table>
<thead>
<tr>
<th>Model</th>
<th>Return Air Temperature</th>
<th>Pressure</th>
<th>5°F</th>
<th>10°F</th>
<th>15°F</th>
<th>20°F</th>
<th>25°F</th>
<th>30°F</th>
<th>35°F</th>
<th>40°F</th>
<th>45°F</th>
<th>50°F</th>
<th>55°F</th>
<th>60°F</th>
<th>65°F</th>
<th>70°F</th>
<th>75°F</th>
<th>80°F</th>
<th>85°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTC36S1</td>
<td>Low Side</td>
<td>70°F DB</td>
<td>23</td>
<td>35</td>
<td>45</td>
<td>57</td>
<td>68</td>
<td>80</td>
<td>91</td>
<td>102</td>
<td>111</td>
<td>120</td>
<td>131</td>
<td>143</td>
<td>154</td>
<td>165</td>
<td>176</td>
<td>188</td>
<td>199</td>
</tr>
<tr>
<td>GTC48S1</td>
<td>Low Side</td>
<td>70°F DB</td>
<td>20</td>
<td>31</td>
<td>43</td>
<td>54</td>
<td>67</td>
<td>80</td>
<td>91</td>
<td>102</td>
<td>111</td>
<td>120</td>
<td>131</td>
<td>143</td>
<td>154</td>
<td>165</td>
<td>176</td>
<td>188</td>
<td>199</td>
</tr>
<tr>
<td>GTC60S1</td>
<td>Low Side</td>
<td>70°F DB</td>
<td>27</td>
<td>38</td>
<td>48</td>
<td>60</td>
<td>73</td>
<td>86</td>
<td>99</td>
<td>109</td>
<td>119</td>
<td>129</td>
<td>139</td>
<td>149</td>
<td>159</td>
<td>169</td>
<td>179</td>
<td>189</td>
<td>199</td>
</tr>
</tbody>
</table>

LOW SIDE PRESSURE +/- 2 PSIG
HIGH SIDE PRESSURE +/- 5 PSIG

Tables based upon rated CFM (airflow) across the evaporator coil.
If incorrect charge suspected (more than +/-2 psig suction; +/-5 psig liquid), it is recommended refrigerant charge be reclaimed, system evacuated and charged to serial plate quantity.

Manual 2100-537A
Page 40 of 49
QUICK REFERENCE TROUBLESHOOTING CHART FOR WATER TO AIR HEAT PUMP

WATER COIL SECTION

- Water Rev.
- Indoor Blower
- Motor

POWER SUPPLY

- Line Voltage

INDOOR SECTION

- Compressor
- Control Transformer
- Thermostat
- Faulty Wiring

AUXILIARY HEAT

- Solenoid Valve
- Metering Device

REFRIGERANT SYSTEM

- Compressor
- Refrigerant Charge
- Non-Condensables

CYCLE

- Cycle
- Heating Cycle
- Cooling Cycle

DENOTES

- Denotes common cause
- Denotes occasional cause
SERVICE HINTS

1. Caution owner to maintain clean air filters at all times. Also, not to needlessly close off supply and return air registers. This reduces airflow through the system, which shortens equipment service life as well as increasing operating costs.

2. Check all power fuses or circuit breakers to be sure that they are the correct rating.

UNBRAZING SYSTEM COMPONENTS

If the refrigerant charge is removed from a scroll equipped unit by bleeding the high side only, it is sometimes possible for the scrolls to seal, preventing pressure equalization through the compressor. This may leave low side shell and suction line tubing pressurized. If the brazing torch is then applied to the low side while the low side shell and suction line contains pressure, the pressurized refrigerant and oil mixture could ignite when it escapes and contacts the brazing flame. To prevent this occurrence, it is important to check both the high and low side with manifold gauges before unbrazing.

ECM MOTOR

This unit is equipped with an ECM motor. It is important that the blower motor plugs are not plugged in or unplugged while the power is on. Failure to remove power prior to unplugging or plugging in the motor could result in motor failure.

WARNING

Both the high and low side of the scroll compressor must be checked with manifold gauges before unbrazing system components. Failure to do so could cause pressurized refrigerant and oil mixture to ignite if it escapes and contacts the brazing flame causing property damage, bodily harm or death.

CAUTION

Do not plug in or unplug blower motor connectors while the power is on. Failure to do so may result in motor failure.

COMPRESSOR SOLENOID

(See Sequence of Operation on Pages 36 & 37 for function.)

A nominal 24-volt direct current coil activates the internal compressor solenoid. The input control circuit voltage must be 18 to 28 volts ac. The coil power requirement is 20 VA. The external electrical connection is made with a molded plug assembly. This plug contains a full wave rectifier to supply direct current to the unloader coil.

Compressor Solenoid Test Procedure – If it is suspected that the unloader is not working, the following methods may be used to verify operation.

1. Operate the system and measure compressor amperage. Cycle the compressor solenoid on and off at 10-second intervals. The compressor amperage should go up or down at least 25 percent.

2. If step one does not give the expected results, shut unit off. Apply 18 to 28 volts ac to the solenoid molded plug leads and listen for a click as the solenoid pulls in. Remove power and listen for another click as the solenoid returns to its original position.

3. If clicks can’t be heard, shut off power and remove the control circuit molded plug from the compressor and measure the solenoid coil resistance. The resistance should be 32 to 60 ohms depending on compressor temperature.

4. Next, check the molded plug.

Voltage check: Apply control voltage to the plug wires (18 to 28 volts ac). The measured dc voltage at the female connectors in the plug should be around 15 to 27 vdc.

Resistance check: Measure the resistance from the end of one molded plug lead to either of the two female connectors in the plug. One of the connectors should read close to zero ohms, while the other should read infinity. Repeat with other wire. The same female connector as before should read zero, while the other connector again reads infinity. Reverse polarity on the ohmmeter leads and repeat. The female connector that read infinity previously should now read close to zero ohms.

Replace plug if either of these test methods does not show the desired results.
TROUBLESHOOTING GE ECM 2.3™ MOTORS

CAUTION:

Disconnect power from unit before removing or replacing connectors, or servicing motor. To avoid electric shock from the motor’s capacitors, disconnect power and wait at least 5 minutes before opening motor.

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Cause/Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor rocks slightly when starting</td>
<td>• This is normal start-up for ECM</td>
</tr>
<tr>
<td>Motor won’t start</td>
<td>• Check blower turns by hand</td>
</tr>
<tr>
<td>• No movement</td>
<td>• Check power at motor</td>
</tr>
<tr>
<td></td>
<td>• Check low voltage (24 Vac R to C) at motor</td>
</tr>
<tr>
<td></td>
<td>• Check low voltage connections (G, Y, W, R, C) at motor</td>
</tr>
<tr>
<td></td>
<td>• Check for unseated pins in connectors on motor harness</td>
</tr>
<tr>
<td></td>
<td>• Test with a temporary jumper between R - G</td>
</tr>
<tr>
<td></td>
<td>• Check motor for tight shaft</td>
</tr>
<tr>
<td></td>
<td>• Perform motor/control replacement check</td>
</tr>
<tr>
<td></td>
<td>• Perform Moisture Check</td>
</tr>
<tr>
<td>Motor rocks, but won’t start</td>
<td>• Check for loose or compliant motor mount</td>
</tr>
<tr>
<td></td>
<td>• Make sure blower wheel is tight on shaft</td>
</tr>
<tr>
<td></td>
<td>• Perform motor/control replacement check</td>
</tr>
<tr>
<td>Motor oscillates up load & down while being tested off of blower</td>
<td>• It is normal for motor to oscillate with no on shaft</td>
</tr>
<tr>
<td>Motor starts, but runs erratically</td>
<td>• Check line voltage for variation or “sag”</td>
</tr>
<tr>
<td>• Varies up and down or intermittent</td>
<td>• Check low voltage connections (G, Y, W, R, C) at motor, unseated pins in motor harness connectors</td>
</tr>
<tr>
<td></td>
<td>• Check “Bk” for erratic CFM command (in variable-speed applications)</td>
</tr>
<tr>
<td></td>
<td>• Check out system controls, Thermostat</td>
</tr>
<tr>
<td></td>
<td>• Perform Moisture Check</td>
</tr>
<tr>
<td></td>
<td>• “Hunts” or “puffs” at high CFM (speed)</td>
</tr>
<tr>
<td></td>
<td>• Does removing panel or filter reduce “puffing”?</td>
</tr>
<tr>
<td></td>
<td>• Reduce restriction</td>
</tr>
<tr>
<td></td>
<td>• Reduce max airflow</td>
</tr>
<tr>
<td>Stays at low CFM despite system call for cool or heat CFM</td>
<td>• Check low voltage (Thermostat) wires and connections</td>
</tr>
<tr>
<td></td>
<td>• Verify fan is not in delay mode; wait until delay complete</td>
</tr>
<tr>
<td></td>
<td>• “R” missing/not connected at motor</td>
</tr>
<tr>
<td></td>
<td>• Perform motor/control replacement check</td>
</tr>
<tr>
<td>Stays at high CFM</td>
<td>• “R” missing/not connected at motor</td>
</tr>
<tr>
<td></td>
<td>• Is fan in delay mode? - wait until delay time complete</td>
</tr>
<tr>
<td></td>
<td>• Perform motor/control replacement check</td>
</tr>
<tr>
<td>Blower won’t shut off</td>
<td>• Current leakage from controls into G, Y or W? Check for Triac switched thermostat or solid-state relay</td>
</tr>
<tr>
<td>Excessive noise</td>
<td>• Determine if it’s air noise, cabinet, duct or motor noise; interview customer, if necessary</td>
</tr>
<tr>
<td>Air noise</td>
<td>• High static creating high blower speed?</td>
</tr>
<tr>
<td></td>
<td>• Is airflow set properly?</td>
</tr>
<tr>
<td></td>
<td>• Does removing filter cause blower to slow down? Check filter</td>
</tr>
<tr>
<td></td>
<td>• Use low-pressure drop filter</td>
</tr>
<tr>
<td></td>
<td>• Check/correct duct restrictions</td>
</tr>
</tbody>
</table>

Evidence of Moisture

- Motor failure or Check malfunction has occurred and moisture is present
- Evidence of moisture present inside air mover

Do

- Check out motor, controls, wiring and connections thoroughly before replacing motor
- Orient connectors down so water can’t get in - Install “drip loops”
- Use authorized motor and model #’s for replacement
- Keep static pressure to a ½” minimum:
 - Recommend high efficiency, low static filters
 - Recommend keeping filters clean.
 - Design ductwork for min. static, max. comfort
 - Look for and recommend ductwork improvement, where necessary

Don’t

- Automatically assume the motor is bad.
- Locate connectors above 7 and 4 o’clock positions
- Replace one motor or control model # with another (unless an authorized replacement)
- Use high pressure drop filters some have H2O drop!

Moisture Check

- Connectors are oriented “down” (or as recommended by equipment manufacturer)
- Arrange harness with “drip loop” under motor
- Is condensate drain plugged?
- Check for low airflow (too much latent capacity)
- Check for undercharged condition
- Check and plug leaks in return ducts, cabinet

Comfort Check

- Check proper airflow settings
- Low static pressure for lowest noise
- Set low continuous-fan CFM
- Use humidistat and 2-speed cooling units
- Use zoning controls designed for ECM that regulate CFM
- Thermostat in bad location?

Evidence of Moisture (speed)

- “Hunts” or “puffs” at high CFM (speed)
- Does removing panel or filter reduce “puffing”?
- Reduce restriction
- Reduce max. airflow

Perform Moisture Check

- Check for Triac switched thermostat or solid-state relay
- Is condensate drain plugged?
- Check for low airflow (too much latent capacity)
- Check for undercharged condition
- Check and plug leaks in return ducts, cabinet

Moisture Check

- Connectors are oriented “down” (or as recommended by equipment manufacturer)
- Arrange harness with “drip loop” under motor
- Is condensate drain plugged?
- Check for low airflow (too much latent capacity)
- Check for undercharged condition
- Check and plug leaks in return ducts, cabinet

Comfort Check

- Check proper airflow settings
- Low static pressure for lowest noise
- Set low continuous-fan CFM
- Use humidistat and 2-speed cooling units
- Use zoning controls designed for ECM that regulate CFM
- Thermostat in bad location?

Evidence of Moisture

- Motor failure or Check malfunction has occurred and moisture is present
- Evidence of moisture present inside air mover

Do

- Check out motor, controls, wiring and connections thoroughly before replacing motor
- Orient connectors down so water can’t get in - Install “drip loops”
- Use authorized motor and model #’s for replacement
- Keep static pressure to a ½” minimum:
 - Recommend high efficiency, low static filters
 - Recommend keeping filters clean.
 - Design ductwork for min. static, max. comfort
 - Look for and recommend ductwork improvement, where necessary

Don’t

- Automatically assume the motor is bad.
- Locate connectors above 7 and 4 o’clock positions
- Replace one motor or control model # with another (unless an authorized replacement)
- Use high pressure drop filters some have H2O drop!

Moisture Check

- Connectors are oriented “down” (or as recommended by equipment manufacturer)
- Arrange harness with “drip loop” under motor
- Is condensate drain plugged?
- Check for low airflow (too much latent capacity)
- Check for undercharged condition
- Check and plug leaks in return ducts, cabinet

Comfort Check

- Check proper airflow settings
- Low static pressure for lowest noise
- Set low continuous-fan CFM
- Use humidistat and 2-speed cooling units
- Use zoning controls designed for ECM that regulate CFM
- Thermostat in bad location?
Replacing ECM Control Module
To replace the control module for the GE variable-speed indoor blower motor you need to take the following steps:

1. You MUST have the correct replacement module. The controls are factory programmed for specific operating modes. Even though they look alike, different modules may have completely different functionality. USING THE WRONG CONTROL MODULE VOIDS ALL PRODUCT WARRANTIES AND MAY PRODUCE UNEXPECTED RESULTS.

2. Begin by removing AC power from the unit being serviced. DO NOT WORK ON THE MOTOR WITH AC POWER APPLIED. To avoid electric shock from the motor’s capacitors, disconnect power and wait at least 5 minutes before opening motor.

3. It is not necessary to remove the motor from the blower assembly, nor the blower assembly from the unit. Unplug the two cable connectors to the motor control assembly. There are latches on each connector. DO NOT PULL ON THE WIRES. The plugs remove easily when properly released.

4. Locate the screws that retain the motor control bracket to the sheet metal of the unit and remove them. Remove two (2) nuts that retain the control to the bracket and then remove two (2) nuts that retain sheet metal motor control end plate. Refer to Figure 21.

5. Disconnect the three (3) wires interior of the motor control by using your thumb and forefinger squeezing the latch tab and the opposite side of the connector plug, gently pulling the connector. DO NOT PULL ON THE WIRES, GRIP THE PLUG ONLY. Refer to Figure 21.

6. The control module is now completely detached from the motor. Verify with a standard ohmmeter that the resistance from each motor lead (in the motor plug just removed) to the motor shell is >100K ohms. Refer to Figure 22. (Measure to unpainted motor end plate.) If any motor lead fails this test, do not proceed to install the control module. THE MOTOR IS DEFECTIVE AND MUST BE REPLACED. Installing the new control module will cause it to fail also.

7. Verify that the replacement control is correct for your application. Refer to the manufacturer's authorized replacement list. USING THE WRONG CONTROL WILL RESULT IN IMPROPER OR NO BLOWER OPERATION. Orient the control module so that the 3-wire motor plug can be inserted into the socket in the control. Carefully insert the plug and press it into the socket until it latches. A SLIGHT CLICK WILL BE HEARD WHEN PROPERLY INSERTED.

8. Reverse the steps #5, 4, 3 to reconnect the motor control to the motor wires, securing the motor control cover plate, mounting the control to the bracket, and mounting the motor control bracket back into the unit. MAKE SURE THE ORIENTATION YOU SELECT FOR REPLACING THE CONTROL ASSURES THE CONTROL’S CABLE CONNECTORS WILL BE LOCATED DOWNWARD IN THE APPLICATION SO THAT WATER CANNOT RUN DOWN THE CABLES AND INTO THE CONTROL. DO NOT OVERTIGHTEN THE BOLTS.

9. Plug the 16-pin control plug into the motor. The plug is keyed. Make sure the connector is properly seated and latched.

10. Plug the 5-pin power connector into the motor. Even though the plug is keyed, OBSERVE THE PROPER ORIENTATION. DO NOT FORCE THE CONNECTOR. It plugs in very easily when properly oriented. REVERSING THIS PLUG WILL CAUSE IMMEDIATE FAILURE OF THE CONTROL MODULE.

11. Final installation check. Make sure the motor is installed as follows:
 a. Motor connectors should be oriented between the 4 o’clock and 8 o’clock positions when the control is positioned in its final location and orientation.
 b. Add a drip loop to the cables so that water cannot enter the motor by draining down the cables. Refer to Figure 23.

The installation is now complete. Reapply the AC power to the HVAC equipment and verify that the new motor control module is working properly. Follow the manufacturer's procedures for disposition of the old control module.
TROUBLESHOOTING GE ECM™ MOTORS CONT’D.

<table>
<thead>
<tr>
<th>MODE of OPERATION</th>
<th>Thermostat 24 VAC Input Signals</th>
<th>Pin #1</th>
<th>Pin #2</th>
<th>Pin #3</th>
<th>Pin #4</th>
<th>Pin #5</th>
<th>Pin #6</th>
<th>Pin #7</th>
<th>Pin #8</th>
<th>Pin #9</th>
<th>Pin #10</th>
<th>Pin #11</th>
<th>Pin #12</th>
<th>Pin #13</th>
<th>Pin #14</th>
<th>Pin #15</th>
<th>Pin #16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>—</td>
<td>24 VAC "C" (Common) Signal, Always Energized</td>
<td></td>
</tr>
<tr>
<td></td>
<td>"G", "Y1", "Y2", "O"</td>
<td></td>
</tr>
<tr>
<td></td>
<td>"G", "Y1", "Y2", "W1", "W2"</td>
<td></td>
</tr>
<tr>
<td>Pin #3</td>
<td>24 VAC "C" (Common) Signal, Always Energized</td>
<td></td>
</tr>
<tr>
<td>Pin #4</td>
<td>Delay Tap Profiles, Varied Half-Wave Signals Based Upon Settings</td>
<td></td>
</tr>
<tr>
<td>Pin #5</td>
<td>Cool Tap Select Tables, Varied Half-Wave Signals Based Upon Settings (Tonnage)</td>
<td></td>
</tr>
<tr>
<td>Pin #6</td>
<td></td>
</tr>
<tr>
<td>Pin #7</td>
<td>Adjustment Tap Profiles, Varied Half-Wave Signals Based Upon Settings</td>
<td></td>
</tr>
<tr>
<td>Pin #8</td>
<td>DC Volts "*" Output in Direct Correlation to CFM</td>
<td></td>
</tr>
<tr>
<td>Pin #9</td>
<td>Future Use; Not Currently Programmed for Function</td>
<td></td>
</tr>
<tr>
<td>Pin #10</td>
<td>Heat Tap Select Tables, Varied Half-Wave Signals Based Upon Tonnage</td>
<td></td>
</tr>
<tr>
<td>Pin #11</td>
<td>24 VAC Hot "R" Signal, Always Energized</td>
<td></td>
</tr>
<tr>
<td>Pin #12</td>
<td></td>
</tr>
<tr>
<td>Pin #13</td>
<td></td>
</tr>
<tr>
<td>Pin #14</td>
<td></td>
</tr>
<tr>
<td>Pin #15</td>
<td></td>
</tr>
<tr>
<td>Pin #16</td>
<td></td>
</tr>
</tbody>
</table>

FIGURE 24

CONTROL CONNECTOR MOTOR HALF

POWER CONNECTOR

<table>
<thead>
<tr>
<th>PIN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jumper Pin 1 to Pin 2 for 120VAC Line Input Only **</td>
</tr>
<tr>
<td>2</td>
<td>Chassis Ground</td>
</tr>
<tr>
<td>3</td>
<td>AC Line</td>
</tr>
<tr>
<td>4</td>
<td>AC Line</td>
</tr>
<tr>
<td>5</td>
<td>AC Line</td>
</tr>
</tbody>
</table>

* Suggested mating connector Housing — AMP 350809-1 Contact — AMP 350537-1

** WARNING — Applying 240VAC line input with PIN 1 to PIN 2 jumper in place will permanently damage unit! **
GROUND SOURCE HEAT PUMP
PERFORMANCE REPORT

This performance check report should be filled out by installer and retained with unit.

DATE __________________________ TAKEN BY: __________________________

1. UNIT:
 Mfr __________________________ Model No. __________________________ S/N __________

 THERMOSTAT:
 Mfr __________________________ Model No. __________________________ P/N __________

2. Person Reporting __________________________

3. Company Reporting __________________________

4. Installed By __________________________ Date Installed __________

5. User’s (Owner’s) Name __________________________
 Address __________________________

6. Unit Location __________________________

WATER SYSTEM INFORMATION

7. Open Loop System (Water Well) __________ Closed Loop System __________
 A. If Open Loop where is water discharged? __________________________

8. The following questions are for Closed Loop systems only

 A. Closed loop system designed by __________________________
 B. Type of antifreeze used __________________________ % Solution __________
 C. System type: Series ____________ Parallel ____________
 D. Pipe material __________________________ Nominal Size __________________________
 E. Pipe Installed:
 1. Horizontal __________________________ Total length of pipe ____________ ft
 No. pipes in trench ____________ Depth bottom pipe ____________ ft
 2. Vertical __________________________ Total length of bore hole ____________ ft
THE FOLLOWING INFORMATION IS NEEDED TO CHECK PERFORMANCE OF UNIT.

<table>
<thead>
<tr>
<th>FLUID SIDE DATA</th>
<th>Cooling</th>
<th>** Heating</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Entering fluid temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Leaving fluid temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Entering fluid pressure</td>
<td></td>
<td>PSIG</td>
</tr>
<tr>
<td>12. Leaving fluid pressure</td>
<td></td>
<td>PSIG</td>
</tr>
<tr>
<td>13. Pressure drop through coil</td>
<td></td>
<td>PSIG</td>
</tr>
<tr>
<td>14. Gallons per minute through the water coil</td>
<td></td>
<td>GPM</td>
</tr>
<tr>
<td>15. Liquid or discharge line pressure</td>
<td></td>
<td>PSIG</td>
</tr>
<tr>
<td>16. Suction line pressure</td>
<td></td>
<td>PSIG</td>
</tr>
<tr>
<td>17. Voltage at compressor (unit running)</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>18. Amperage draw at line side of contactor</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>19. Amperage at compressor common terminal</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>20. * Suction line temperature 6" from compressor</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>21. * Superheat at compressor</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>22. * Liquid line temperature at metering device</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>23. * Coil subcooling</td>
<td></td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INDOOR SIDE DATA</th>
<th>Cooling</th>
<th>** Heating</th>
</tr>
</thead>
<tbody>
<tr>
<td>24. Dry bulb temperature at air entering indoor coil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25. Wet bulb temperature of air entering indoor coil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26. Dry bulb temperature of air leaving indoor coil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27. Wet bulb temperature of air leaving indoor coil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28. * Supply air static pressure (packaged unit)</td>
<td></td>
<td>WC</td>
</tr>
<tr>
<td>29. * Return air static pressure (packaged unit)</td>
<td></td>
<td>WC</td>
</tr>
<tr>
<td>30. Other information about installation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** When performing a heating test insure that 2nd stage heat is not activated
* Items that are optional
TO 208V TRANSFORMER

FOR 208V OPERATION, MOVE THIS RED WIRE TAP

MODEL

<table>
<thead>
<tr>
<th>DIP SWITCH #</th>
<th>GTC60S1</th>
<th>GTC48S1</th>
<th>GTC36S1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>2</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
</tr>
<tr>
<td>5</td>
<td>OFF</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>6</td>
<td>OFF</td>
<td>OFF</td>
<td>ON</td>
</tr>
</tbody>
</table>

ADJUSTMENT TAPS

NONE "+10%" "-10%" NONE

OFF ON OFF ON

OFF OFF ON ON

FIELD CONNECTIONS TO THERMOSTAT AND CONDENSING SECTION

FOR 208V OPERATION, MOVE THIS RED WIRE TO 208V TRANSFORMER TAP

4117-100 A